up

Biodata Penulis

Marti Widya Sari lahir di Yogyakarta pada

8uz'\ “L's ‘Mes eApiw nie i g

tanggal 27 Maret 1979. Beliau merupakan .
dosen pada Program Studi Informatika,
Fakultas Sains dan Teknologi, Universitas PGRI
Yogyakarta. Latar belakang pendidikannya

dimulai dari Sarjana (S1) dan Magister (S2) di Departemen Teknik Elektro dan

Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada (UGM).
Selanjutnya, beliau menempuh pendidikan Doktor (S3) di Program Studi o e r n
Teknik Industri, Fakultas Teknik, Universitas Gadjah Mada. Kepakaran beliau i

berfokus pada bidang Internet of Things (loT), dan transformasi digital di era
Industri 4.0. Beliau aktif melakukan penelitian dan publikasi ilmiah baik

nasional maupun internasional yang berorientasi pada pengembangan Penulis :
sistem berbasis IoT. Selain kegiatan penelitian, beliau juga terlibat dalam Dr.Marti Wldya Sar|, S.T., M.Eng

2

berbagai program pengabdian kepada masyarakat, khususnya dalam ~

penerapan teknologi tepat guna dan inovasi digital. Dengan semangat
pengembangan ilmu pengetahuan dan inovasi, beliau berkomitmen untuk
terus berkontribusi dalam pengembangan dunia pendidikan, riset, dan

uJapowy

industri melalui inovasi digital yang berkelanjutan dan berdampak nyata bagi
pembangunan bangsa.

ISBN 978-L23-8551-40-8
LA
Lembaga Penelitian dan Pengabdian Masyarakat Unit 1 Gedung B Lantai 2

JI. PGRI | Sonosewu No. 117 Yogyakarta 9 7 786238 551408
Telp (0274) 376808, 373198,418077, Fax (0274) 376808 :
Email: upypress@gmail.com, Web: upypress.upy.ac.id

SISTEM OPERASI MODERN

Penulis :

Dr. Marti Widya Sari, S.T., M.Eng

SISTEM OPERASI MODERN

Penulis : Dr. Marti Widya Sari, S.T., M.Eng
Editor : Reza Diapratama, S.Kom

Layout : Prayitno

Cover : Reza Diapratama, S.Kom

Cetakan Pertama, Oktober 2025
17cmx23cm+v + 106

ISBN : 978-623-8551-40-8

Penerbit :

UPY Press

Lembaga Penelitian dan Pengabdian Masyarakat

Unit 4 Lantai 4

JI. PGRI I Sonosewu No. 117 Yogyakarta

Telp (0274) 376808, 373198,418077, Fax (0274) 376808
Email: upypress@gmail.com

Web: upypress.upy.ac.id

Hak cipta dilindungi oleh Undang-Undang
Dilarang memperbanyak karya tulisan ini tanpa izin tertulis dari
Penerbit

Cetakan I, Oktober 2025

KATA PENGANTAR

Segala puji syukur penulis panjatkan ke hadirat Allah SWT
atas limpahan rahmat dan karunia-Nya sehingga buku dengan judul
“Sistem Operasi Modern” ini dapat disusun dan diselesaikan dengan
baik.

Buku ini disusun sebagai salah satu bahan ajar untuk
mendukung kegiatan pembelajaran dalam mata kuliah Sistem
Operasi, khususnya yang membahas perkembangan sistem operasi
modern. Materi dalam buku ini mencakup berbagai topik penting
mulai dari arsitektur sistem operasi, virtualisasi, cloud computing,
sistem embedded, hingga keamanan dan integrasi kecerdasan buatan.
Harapannya, buku ini dapat menjadi panduan bagi mahasiswa dan
pembaca umum untuk memahami esensi dan arah perkembangan
sistem operasi di era komputasi masa Kini.

Penyusunan buku ini juga didasarkan pada berbagai referensi
terkini dan studi literatur dari sumber-sumber akademik yang
kredibel, serta dilengkapi dengan contoh-contoh nyata dari sistem
operasi modern yang digunakan secara luas saat ini, seperti Windows
11, macOS, Linux, Android, dan iOS.

Penulis menyadari masih terdapat kekurangan dalam buku ini.
Oleh karena itu, kritik dan saran yang membangun sangat diharapkan
demi penyempurnaan edisi selanjutnya.

Semoga buku ini dapat memberikan manfaat yang sebesar-
besarnya bagi seluruh pembaca dan menjadi bagian dari upaya
peningkatan mutu pendidikan di bidang teknologi informasi.

Yogyakarta, 30 September 2025

Penulis

DAFTARISI

HALAMAN JUDUL oottt i
KATA PENGANTAR ..ot il
DAFTAR IST..eiicieeee et v
BAB 1: PENDAHULUAN SISTEM OPERASI MODERN................ 1
A. Definisi Sistem Operasi Modern..........c.ccovvveriiieiienenieneennen, 1
B. Perbandingan Sistem Operasi Tradisional dan Modern............ 4
C. Tren dan Inovasi Teknologi Sistem Operasicccovvceervrnnnne. 8
D. Contoh Sistem Operasi Modern (Windows 11, macOS, Linux,
ANdroid, 10S) ..eviiiiiie 11
BAB 2: ARSITEKTUR DAN DESAIN SISTEM OPERASI
MODERN ...ttt s 15
A. Modularitas dan Microkernel..............ccooviiiiiinniiiiicie, 15
B. Desain Berbasis Layanan (Service-Oriented OS)................... 19
C. Pendekatan Container dan Virtualisasicccccoevivirivernnnnne. 21
D. Sistem Operasi Real-Time dan Embeddedcc.ccceieee 24
BAB 3: VIRTUALISASI DAN CLOUD COMPUTING.................. 27
A. Konsep ViIrtualiSasiccoocvververriniienieec e 27
B. Sistem Operasi dalam Lingkungan Virtualccccovviennn 34
C. Integrasi Sistem Operasi dengan Platform Cloud................... 37
D. Sistem Operasi sebagai Layanan (OSaaS)........cc.cccoeveviiinnnnn 41
BAB 4: SISTEM OPERASI MOBILE DAN PERANGKAT
RINGAN Lttt 45
A. Ciri Khas OS Mobilecccoooiiiiiiiiiiiiieeeeee e 45
B. Manajemen Daya dan Konektivitas..........ccccoovvviiiiieniienniinnns 48

C. Fragmentasi dan Keamanan...........ccccceevriiniiiininnicnincnnn 50

D. Perbandingan Android dan i0OScccooiiiiiiiiiiicinn 52
BAB 5. SISTEM OPERASI JARINGAN DAN TERDISTRIBUSI . 57
A. Sistem Operasi Jaringan (Network Operating System) 57
B. Sistem Operasi Terdistribusi (Distributed Operating System) 61
C. Manajemen Sumber Daya Terdistribusi........c.cccccvvriveiniinennne 63
D. Contoh OS Terdistribusi (Google Fuchsia, Plan 9)................. 65
BAB 6: KEAMANAN PADA SISTEM OPERASI MODERN 69
A. Model Keamanan Modern (Mandatory Access Control,
SELINUX, APPATIINOT) ...veiiviiiiiiieiiiieesieeie e 69
B. Isolasi Proses dan SandboX............cccooveiiiiiiiiiiniiniciiien 74
C. Enkripsi dan Perlindungan Dataccccccovviiinieniciiiennn 77
D. Update Keamanan dan Patch Managementcccccceeeenn 79

BAB 7: KONTROL VERSI, PEMBARUAN, DAN AUTOMASI ... 83
A. Continuous Integration dan Continuous Deployment (CI/CD)

.. 83

B. Sistem Pembaruan Otomatis OS...........cccccceiiiiiiiiiiiiiiicns 87
C. Manajemen Versi Kernel dan Komponen OS..............c.cccoee. 89
BAB 8: MASA DEPAN SISTEM OPERASI.......cccoeiiiiiiieiieee 93
A. Integrasi dengan Al dan Machine Learning.............c.cccceveeeee 93
B. Sistem Operasi untuk IoT dan Edge Computing 96
C. Pengembangan OS Open SOUICEccevverrriieiiiiesiiieesieeene 99
D. Tantangan dan Peluang ke Depanccccoeeiiiiiiiiiiicnnne, 102
DAFTAR PUSTAKA ... 105

BAB 1: PENDAHULUAN SISTEM OPERASI
MODERN

Sistem operasi (SO) merupakan fondasi utama yang
memungkinkan perangkat keras komputer berfungsi dan berinteraksi
dengan perangkat lunak aplikasi. Seiring dengan perkembangan
teknologi informasi yang pesat, sistem operasi juga terus berevolusi
dari bentuk tradisionalnya menjadi sistem operasi modern yang
memiliki kapabilitas lebih canggih dan adaptif terhadap berbagai
lingkungan komputasi. Evolusi ini didorong oleh kebutuhan akan
performa yang lebih tinggi, keamanan yang lebih baik, efisiensi
sumber daya, serta kemampuan untuk mendukung paradigma
komputasi baru seperti cloud computing, mobile, dan Internet of
Things (IoT). Bab ini akan menguraikan definisi sistem operasi
modern, membandingkannya secara fundamental dengan sistem
operasi tradisional, membahas tren dan inovasi terkini yang
membentuk lanskap SO saat ini, serta memberikan contoh sistem
operasi modern yang dominan dan banyak digunakan di berbagai
platform.

A. Definisi Sistem Operasi Modern

Sistem Operasi (SO) secara fundamental adalah perangkat lunak
sistem yang berfungsi sebagai manajer sumber daya perangkat keras
komputer dan perangkat lunak, sekaligus menyediakan layanan dasar
untuk program aplikasi. Ini termasuk manajemen prosesor, memori,
perangkat I/O (input/output), serta sistem file. SO bertindak sebagai
antarmuka perantara, menyederhanakan interaksi kompleks antara
pengguna, aplikasi, dan perangkat keras, sehingga pengguna dapat

menjalankan program tanpa perlu memahami detail teknis tingkat

rendah dari perangkat keras.

Namun, "sistem operasi modern" memiliki konotasi yang lebih
spesifik, mencerminkan evolusi signifikan dari pendahulunya. SO
modern adalah sistem yang dirancang untuk mengatasi tantangan dan
memanfaatkan peluang dari arsitektur komputasi kontemporer dan
kebutuhan pengguna yang semakin kompleks. Karakteristik utama
yang mendefinisikan sistem operasi modern mencakup:

1. Dukungan Penuh untuk Arsitektur Multi-core dan Paralelisme
Berbeda dengan SO tradisional yang mungkin hanya mendukung
satu inti prosesor atau multi-tasking sederhana, SO modern
dioptimalkan untuk memanfaatkan sepenuhnya arsitektur multi-
core dan multi-threaded. Ini melibatkan algoritma penjadwalan
proses yang canggih untuk mendistribusikan beban kerja secara
efisien ke berbagai inti CPU, memungkinkan eksekusi paralel dari
banyak tugas dan meningkatkan responsivitas sistem secara
keseluruhan.

2. Arsitektur Modular dan Mikrokernel (atau Hybrid) Sebagian besar
SO tradisional mengadopsi arsitektur monolitik, di mana semua
komponen inti (manajemen memori, device driver, sistem file,
dll.) berada dalam satu blok kernel besar. SO modern seringkali
beralih ke arsitektur yang lebih modular, termasuk desain
mikrokernel (kernel minimal dengan layanan inti di ruang
pengguna) atau hybrid kernel. Pendekatan ini meningkatkan
stabilitas (karena kegagalan satu komponen di ruang pengguna
tidak meruntuhkan seluruh kernel), keamanan (isolasi antar
komponen), dan kemudahan pemeliharaan serta pembaruan.

3. Manajemen Memori Virtual yang Canggih SO modern
mengimplementasikan sistem memori virtual yang robust,
memungkinkan aplikasi untuk mengakses memori lebih dari yang

tersedia secara fisik. Ini dicapai melalui teknik paging dan
swapping, serta alokasi memori dinamis. Selain itu, perlindungan
memori antarproses sangat krusial, mencegah satu aplikasi untuk
mengakses atau merusak ruang memori aplikasi lain atau kernel
itu sendiri, yang meningkatkan stabilitas dan keamanan sistem.

. Mekanisme Keamanan Terintegrasi yang Kuat Dengan semakin
maraknya ancaman siber, keamanan menjadi prioritas utama. SO
modern memiliki lapisan keamanan berlapis yang terintegrasi,
termasuk kontrol akses wajib (Mandatory Access Control/MAC)
seperti SELinux dan AppArmor, yang menerapkan kebijakan
keamanan ketat di luar kendali pengguna. Fitur sandboxing dan
isolasi proses memastikan bahwa aplikasi berbahaya tidak dapat
mempengaruhi bagian lain dari sistem. Enkripsi native (misalnya,
enkripsi full-disk) juga menjadi standar untuk melindungi data
saat rest.

. Dukungan Jaringan yang Komprehensif dan Terdistribusi SO
modern dibangun dengan kemampuan jaringan yang mendalam,
mendukung berbagai protokol komunikasi (TCP/IP, UDP, dll.)
dan layanan jaringan yang kompleks. Ini memungkinkan
konektivitas yang lancar ke internet, cloud services, dan arsitektur
terdistribusi, di mana sumber daya dan komputasi tersebar di
beberapa mesin.

. Antarmuka Pengguna Grafis (GUI) yang Intuitif dan Responsif
Evolusi dari Command Line Interface (CLI) ke GUI telah
membuat komputer lebih mudah diakses. SO modern menawarkan
GUI yang kaya fitur visual, mendukung interaksi multi-sentuh,
suara, bahkan gesture. Desain yang responsif memastikan
pengalaman pengguna yang lancar di berbagai ukuran layar dan
perangkat.

7. Skalabilitas dan Fleksibilitas SO modern dirancang untuk
beradaptasi dengan berbagai skala dan jenis perangkat keras,
mulai dari perangkat embedded berdaya rendah (misalnya, untuk
IoT), smartphone, tablet, laptop, desktop, hingga server enterprise
dan infrastruktur cloud yang masif. Fleksibilitas ini
memungkinkan SO yang sama atau turunannya untuk digunakan
dalam berbagai konteks komputasi.

8. Dukungan Virtualisasi dan Kontainerisasi Kemampuan untuk
menjalankan beberapa sistem operasi atau aplikasi terisolasi pada
satu perangkat keras fisik adalah ciri khas SO modern. SO modern
menyediakan dukungan bawaan untuk teknologi hypervisor
(seperti Type 1 dan Type 2) untuk virtualisasi mesin virtual (VM)
dan juga mendukung kontainerisasi (misalnya, Docker) untuk
isolasi aplikasi yang lebih ringan dan efisien.

B. Perbandingan Sistem Operasi Tradisional dan
Modern

Untuk memahami sepenuhnya esensi sistem operasi modern,
penting untuk melihat perbedaannya dengan sistem operasi tradisional
yang mendahuluinya. Perbedaan ini tidak hanya terletak pada fitur
permukaan, tetapi juga pada filosofi desain, arsitektur internal, dan
respons terhadap kebutuhan komputasi pada masanya.

1. Sistem Operasi Tradisional (Contoh: MS-DOS, Awal Windows
95, Unix Awal)

2. Fokus Operasional: Umumnya dirancang untuk komputasi single-
user atau single-tasking, atau batch processing pada era
mainframe. Interaksi real-time dengan banyak aplikasi secara
bersamaan masih terbatas.

3. Arsitektur Kernel: Mayoritas menggunakan arsitektur monolitik.
Seluruh komponen kernel (penjadwal CPU, manajemen memori,

device driver, sistem file, layanan jaringan) dikompilasi menjadi
satu blok kode besar yang berjalan di privileged mode.
Keuntungan dari arsitektur ini adalah performa yang cepat karena
semua komponen berada dalam ruang alamat yang sama. Namun,
kelemahannya adalah stabilitas yang rentan — bug atau driver
perangkat yang tidak stabil dapat menyebabkan kernel panic dan
meruntuhkan seluruh sistem.

. Antarmuka Pengguna: Umumnya berbasis Command Line
Interface (CLI) seperti MS-DOS, di mana pengguna mengetikkan
perintah teks. Beberapa memiliki GUI sangat dasar (misalnya,
Windows 1.0 atau awal Windows 95) yang terbatas
fungsionalitasnya.

. Manajemen Sumber Daya: Terbatas. Manajemen memori
seringkali sederhana tanpa perlindungan memori yang kuat
antarprogram. Penjadwalan proses primitif, kurang efisien untuk
multi-tasking yang berat.

. Jaringan: Kapabilitas jaringan sangat minim atau tidak ada sama
sekali secara native. Implementasi jaringan biasanya memerlukan
penambahan software pihak ketiga yang kompleks.

. Keamanan: Fokus pada perlindungan file dasar dan otentikasi
single-user. Mekanisme keamanan tidak dirancang untuk
menahan ancaman siber kompleks atau lingkungan multi-user
yang hostile. Konsep privileged mode dan user mode ada, tetapi
isolasi kurang ketat.

Skalabilitas: Rendah. Sulit untuk diadaptasi ke perangkat keras
baru atau diperluas untuk mendukung skala komputasi yang lebih
besar.

. Virtualisasi/Kontainerisasi: Sama sekali tidak mendukung konsep
ini secara native, karena virtualisasi memerlukan abstraksi
perangkat keras yang canggih yang tidak dimiliki SO tradisional.

10. Sistem Operasi Modern (Contoh: Windows 11, macOS, Linux,
Android, i0S)
Fokus Operasional: Dirancang untuk komputasi multi-tasking,

11.

12.

multi-user, client-server, komputasi terdistribusi, cloud

computing, dan mobile. Mampu menjalankan banyak aplikasi

secara bersamaan dengan responsivitas tinggi.

Arsitektur Kernel: Cenderung mengadopsi arsitektur modular,

mikrokernel, atau hybrid kernel.

a.

Mikrokernel: Kernel inti sangat kecil, hanya menangani fungsi
dasar seperti manajemen memori tingkat rendah, penjadwalan
proses, dan inter-process communication (IPC). Sebagian
besar layanan SO (sistem file, device driver, jaringan) berjalan
sebagai proses terpisah di ruang pengguna (misalnya, QNX).
Ini meningkatkan stabilitas dan keamanan.

Hybrid Kernel: Menggabungkan elemen monolitik dan
mikrokernel, di mana beberapa layanan non-esensial
dipindahkan ke ruang pengguna, tetapi device driver dan
layanan penting lainnya tetap di kernel untuk performa
(misalnya, Windows NT Family, macOS).

Modular Monolitik: Kernel Linux secara teknis adalah
monolitik, tetapi sangat modular dengan kemampuan memuat
dan membongkar modul driver secara dinamis, memberikan
fleksibilitas tanpa mengorbankan performa.

Antarmuka Pengguna: Dominan Antarmuka Pengguna Grafis
(GUI) yang canggih, intuitif, responsif, dan kaya fitur visual.
Mendukung berbagai input (sentuhan, suara, gesture, stylus)
dan adaptif terhadap resolusi layar yang berbeda.

Manajemen Sumber Daya: Sangat canggih. Menggunakan
preemptive multi-tasking untuk memastikan setiap proses
mendapat waktu CPU yang adil. Manajemen memori virtual

dengan demand paging dan swapping yang efisien. Sistem file

yang journaling untuk integritas data.

Jaringan: Terintegrasi penuh dengan berbagai protokol

jaringan dan API untuk cloud services, VPN, firewall, dan

komunikasi peer-to-peer. Dirancang untuk lingkungan yang
selalu terhubung.

Keamanan: Dibangun dengan filosofi "keamanan berlapis"

(defense-in-depth). Ini mencakup:

1) Mandatory Access Control (MAC): Kebijakan akses yang
ditentukan oleh sistem administrator, bukan pengguna,
untuk keamanan yang lebih tinggi.

2) Isolasi Proses dan Sandboxing: Setiap aplikasi berjalan
dalam lingkungan terisolasi untuk mencegah akses tidak
sah atau kerusakan sistem.

3) Enkripsi Data: Fitur enkripsi full-disk atau file-level secara
bawaan untuk melindungi data dari akses fisik tidak sah.

4) Pembaruan Otomatis: Mekanisme patch management dan
update keamanan reguler untuk menambal kerentanan.
Skalabilitas: Tinggi, dapat menyesuaikan performa dan fitur
dari perangkat berdaya rendah (IoT) hingga server enterprise

bertenaga tinggi, serta lingkungan cloud berskala petabyte.

Virtualisasi/Kontainerisasi: Dukungan bawaan untuk teknologi

hypervisor (baik Type 1 maupun Type 2) dan container

runtime (misalnya, Docker). Ini memungkinkan efisiensi
sumber daya dan isolasi aplikasi yang lebih baik, menjadi
fundamental dalam arsitektur cloud dan microservices.

C. Tren dan Inovasi Teknologi Sistem Operasi

Lanskap teknologi yang terus berubah menuntut sistem operasi
untuk terus berinovasi. Beberapa tren dan inovasi kunci yang secara
signifikan membentuk arah pengembangan sistem operasi modern
meliputi:
1. Komputasi Awan (Cloud Computing) dan Virtualisasi:

a. SO sebagai Guest di Cloud: Banyak SO modern dioptimalkan
untuk berjalan sebagai mesin virtual (VM) di infrastruktur
cloud publik maupun privat. Ini memerlukan kernel yang
efisien dalam lingkungan virtual dan driver yang kompatibel
dengan hypervisor.

b. SO sebagai Host untuk Cloud: SO seperti Linux banyak
digunakan sebagai sistem operasi host untuk hypervisor
(misalnya, KVM) yang menjalankan VM di cloud.

C. Abstraksi Sumber Daya: Inovasi dalam SO cloud berfokus
pada abstraksi sumber daya fisik menjadi sumber daya virtual
yang dapat disekalakan secara dinamis, memungkinkan model
Infrastructure as a Service (1aaS) dan Platform as a Service
(PaaXS).

2. Internet of Things (IoT) dan Edge Computing:

a. SO Ringan dan Hemat Daya: Perangkat IoT memiliki sumber
daya yang sangat terbatas (memori, prosesor, daya). Ini
mendorong pengembangan SO yang sangat ringan dan real-
time seperti FreeRTOS, Zephyr OS, dan RIOT OS, yang
dirancang untuk footprint kecil, konsumsi daya minimal, dan
kemampuan respons cepat untuk aplikasi kritis.

b. Keamanan di Edge: Keamanan menjadi tantangan besar di
perangkat IoT. SO untuk edge computing berinovasi dalam
fitur keamanan perangkat keras (Hardware Root of Trust),

firmware update yang aman, dan isolasi proses untuk
melindungi data di tepi jaringan.
3. Integrasi Kecerdasan Buatan (AI) dan Pembelajaran Mesin (ML):

a. Optimasi Sumber Daya Adaptif: A/ML digunakan dalam SO
untuk mempelajari pola penggunaan pengguna dan aplikasi,
kemudian mengoptimalkan alokasi sumber daya (CPU,
memori, I/O) secara dinamis untuk performa yang lebih baik
dan efisiensi energi.

b. Peningkatan Keamanan Prediktif: ML dapat menganalisis
perilaku sistem dan mendeteksi anomali yang
mengindikasikan serangan siber atau malware lebih cepat
daripada metode deteksi berbasis tanda tangan tradisional.

C. Antarmuka Pengguna Cerdas: Asisten virtual (misalnya,
Cortana, Siri, Google Assistant) semakin terintegrasi dalam
SO, menggunakan AI untuk memahami perintah suara dan
memberikan respons kontekstual.

4. Kontainerisasi dan Microservices:
a. Dukungan Kernel untuk Kontainer: SO modern, terutama

Linux, menyediakan fitur kernel (seperti namespaces dan
cgroups) yang menjadi dasar bagi teknologi kontainer seperti
Docker dan Kubernetes. Ini memungkinkan aplikasi untuk
dikemas dan dijalankan dalam lingkungan terisolasi yang
lebih ringan dan cepat daripada VM.

b. Arsitektur Microservices: Kontainer memfasilitasi adopsi
arsitektur microservices, di mana aplikasi dipecah menjadi
layanan-layanan kecil yang independen. SO modern harus
efisien dalam mengelola banyak kontainer yang berjalan

secara bersamaan.

5. Keamanan Proaktif dan Privasi Data:

a. Zero-Trust Security: SO modern bergerak menuju model
keamanan zero-trust, di mana setiap permintaan akses
diverifikasi tanpa asumsi kepercayaan.

b. Perlindungan Data End-to-End: Peningkatan dalam enkripsi
data di seluruh tumpukan, dari penyimpanan (data at rest)
hingga transmisi (data in transit).

c. Privasi Pengguna: SO kini memberikan kontrol yang lebih
granular kepada pengguna atas izin aplikasi dan akses data
pribadi, sejalan dengan regulasi privasi seperti GDPR.

6. Pengembangan Open Source dan Kolaborasi Komunitas:

a. Model pengembangan open source, yang dipelopori oleh
Linux, telah membuktikan diri sebagai pendorong inovasi
yang kuat. Komunitas global dapat meninjau kode,
menemukan bug, mengembangkan fitur baru, dan
mengoptimalkan kinerja. Ini seringkali menghasilkan SO yang
lebih aman, stabil, dan fleksibel karena transparansi dan
keterlibatan kolektif. Proyek-proyek seperti Android (berbasis
Linux) dan berbagai distribusi Linux menunjukkan kekuatan
model ini.

10

CLOUD \ /
SMARTPHONE/

TABLET

SISTEM
S —
MODERN
LAPTOP/PC

/ @ \ SERVER

LAPTOP/PC loT DEVICES

Gambar 1.1

D. Contoh Sistem Operasi Modern (Windows 11,
macOS, Linux, Android, iOS)

Untuk memberikan gambaran yang lebih konkret, berikut
adalah beberapa contoh sistem operasi modern yang saat ini
mendominasi berbagai segmen pasar komputasi, masing-masing
dengan karakteristik unik dan area fokusnya:

1. Windows 11:

a. Platform: Desktop, Laptop, Tablet (khususnya untuk
produktivitas).

b. Karakteristik: Penerus Windows 10, menawarkan antarmuka
pengguna yang dirancang ulang dengan fokus pada
kesederhanaan dan produktivitas. Fitur-fitur modernnya
mencakup Snap Layouts dan Snap Groups untuk multi-tasking

yang lebih baik, integrasi Microsoft Teams yang mendalam,

11

dan yang paling revolusioner adalah kemampuan untuk
menjalankan aplikasi Android secara native melalui Amazon
Appstore. Keamanan ditingkatkan dengan persyaratan Trusted
Platform Module (TPM) 2.0 dan Secure Boot.

c. Penggunaan: Sangat populer untuk penggunaan pribadi,
gaming, produktivitas kantor, dan pengembangan software.

2. macOS:

a. Platform: Desktop, Laptop (Produk Apple).

b. Karakteristik: Dikenal dengan desain antarmuka yang elegan,
stabilitas yang sangat baik, dan integrasi yang erat dalam
ekosistem perangkat keras dan lunak Apple. macOS unggul
dalam manajemen daya, grafis canggih, dan fitur keamanan
serta privasi yang ketat. Pembaruan berkelanjutan membawa
inovasi seperti fitur keamanan Gatekeeper dan sandboxing
aplikasi yang ketat.

c. Penggunaan: Populer di kalangan profesional kreatif,
pengembang software, dan pengguna yang mencari
pengalaman komputasi premium dan terintegrasi.

3. Linux:

a. Platform: Server, Superkomputer, Desktop, Laptop, Embedded
Devices, 10T.

b. Karakteristik: Merupakan keluarga sistem operasi open source
yang dibangun di atas kernel Linux. Kekuatan utamanya
adalah fleksibilitas, skalabilitas, dan stabilitas luar biasa.
Tersedia dalam berbagai "distribusi" (misalnya, Ubuntu,
Fedora, Debian, Red Hat Enterprise Linux) yang disesuaikan
untuk berbagai kebutuhan. Linux menjadi tulang punggung

12

internet, cloud computing, dan banyak infrastruktur enterprise
karena keamanannya yang kuat dan efisiensi sumber dayanya.

c. Penggunaan: Dominan di lingkungan server dan cloud, banyak
digunakan oleh pengembang, peneliti, dan pengguna yang
mengutamakan kustomisasi dan kontrol.

4. Android:

a. Platform: Smartphone, Tablet, Smart TV, Smartwatch, Mobil
(Android Auto), Perangkat IoT.

b. Karakteristik: Sistem operasi mobile paling dominan di dunia,
dikembangkan oleh Google dan berbasis kernel Linux.
Dikenal karena sifatnya yang open source (meskipun dengan
lapisan proprietary Google Mobile Services), ekosistem
aplikasi yang sangat luas (Google Play Store), dan fleksibilitas
untuk disesuaikan oleh berbagai produsen perangkat. Android
terus berinovasi dalam manajemen daya (Doze Mode),
keamanan aplikasi (sandboxing, izin granular), dan fitur-fitur
Al

c. Penggunaan: Utama untuk smartphone dan tablet, menjadi
dasar bagi sebagian besar perangkat mobile non-Apple.

5. 10S:

a. Platform: iPhone, iPad, iPod Touch.

b. Karakteristik: Sistem operasi mobile eksklusif Apple, dikenal
dengan antarmuka pengguna yang sangat intuitif dan mudah
digunakan, performa yang mulus, dan fokus yang kuat pada
privasi serta keamanan pengguna. iOS menerapkan kontrol
ketat pada ekosistem aplikasinya melalui App Store,
memastikan kualitas dan meminimalkan risiko malware.
Integrasi mendalam dengan perangkat keras Apple dan
layanan cloud (iCloud) memberikan pengalaman yang
kohesif.

13

C. Penggunaan: Utama untuk smartphone dan tablet premium
dari Apple.

ndows 11 macO0S Uubuntu i0S

Gambar 1.2

14

BAB 2: ARSITEKTUR DAN DESAIN
SISTEM OPERASI MODERN

Desain arsitektur merupakan inti dari fungsionalitas dan kinerja
sebuah sistem operasi. Sistem operasi modern, berbeda dengan
pendahulunya, dirancang untuk menghadapi kompleksitas komputasi
saat ini, termasuk kebutuhan akan skalabilitas, keamanan, efisiensi,
dan kemampuan beradaptasi dengan lingkungan komputasi yang
beragam. Bab ini akan mengulas prinsip-prinsip arsitektur dan desain
fundamental yang membentuk sistem operasi modern, termasuk
konsep modularitas dan mikrokernel, desain berbasis layanan,
pendekatan kontainer dan virtualisasi, serta karakteristik khusus dari
sistem operasi real-time dan embedded. Pemahaman mendalam
tentang arsitektur ini krusial untuk mengapresiasi kapabilitas dan

inovasi yang ada pada SO masa kini.

A. Modularitas dan Microkernel

Arsitektur sebuah sistem operasi sangat menentukan stabilitas,
keamanan, dan kemudahan pengembangannya. Secara historis,
banyak sistem operasi awal mengadopsi desain monolitik, di mana
seluruh layanan sistem inti—seperti manajemen proses, manajemen
memori, sistem file, device driver, dan layanan jaringan—dikompilasi
menjadi satu blok kode besar yang berjalan dalam ruang kernel
(kernel space), yaitu bagian yang paling privileged dari sistem.
Keuntungan utama dari arsitektur monolitik adalah kinerja yang
tinggi karena semua komponen dapat berkomunikasi langsung tanpa
overhead komunikasi antarproses. Namun, kelemahannya signifikan:

kegagalan di satu komponen (misalnya, bug pada device driver) dapat

15

meruntuhkan seluruh kernel (kernel panic), menyebabkan sistem

crash. Selain itu, sulit untuk melakukan pembaruan atau modifikasi

pada satu komponen tanpa harus mengkompilasi ulang seluruh kernel.

1.

Sebagai respons terhadap keterbatasan ini, arsitektur modularitas
dan mikrokernel muncul sebagai paradigma desain kunci dalam
sistem operasi modern.

Modularitas: Konsep modularitas menekankan pemisahan
fungsionalitas sistem operasi ke dalam unit-unit yang lebih kecil
dan terisolasi, yang disebut modul. Modul-modul ini dapat dimuat
(load) atau dibongkar (unload) dari kernel saat sistem berjalan
tanpa memerlukan reboot total. Kernel Linux, meskipun secara
teknis sering disebut monolitik, sebenarnya sangat modular,
memungkinkan penambahan atau penghapusan device driver atau
fitur tertentu sebagai modul kernel yang dapat dimuat secara
dinamis (loadable kernel modules). Ini meningkatkan fleksibilitas,
mempermudah pemeliharaan, dan mengurangi ukuran kernel
dasar.

Mikrokernel: Arsitektur mikrokernel adalah bentuk modularitas
yang paling ekstrem. Dalam desain mikrokernel, kernel inti dijaga
sekecil mungkin, hanya mencakup fungsi-fungsi paling esensial
seperti:

Manajemen Komunikasi Antarproses (IPC - [Inter-Process
Communication): Mekanisme untuk proses-proses yang berbeda
(termasuk server layanan) dapat saling berkomunikasi.
Manajemen Memori Tingkat Rendah: Pengelolaan ruang alamat
virtual dasar dan perlindungan memori.

Penjadwalan Proses Dasar: Penjadwalan thread dan proses yang

sangat primitif.

16

7. Semua layanan sistem operasi lainnya—seperti sistem file, device
driver, networking stack, dan manajemen hardware yang lebih
kompleks—dipindahkan dari ruang kernel ke ruang pengguna
(user space) dan dijalankan sebagai proses-proses terpisah yang
disebut server. Server-server ini berkomunikasi dengan
mikrokernel dan satu sama lain melalui mekanisme IPC.

8. Kelebihan Mikrokernel:

a. Stabilitas dan Keandalan yang Lebih Tinggi: Jika satu server
layanan mengalami crash (misalnya, device driver kartu
jaringan), hanya server tersebut yang terpengaruh, bukan
seluruh kernel. Sistem operasi dapat memulihkan atau me-
restart server yang crash tanpa reboot sistem.

b. Keamanan yang Lebih Baik: Karena layanan berada di ruang
pengguna, mereka memiliki privilege yang lebih rendah dan
terisolasi satu sama lain. Ini membatasi kerusakan yang dapat
ditimbulkan oleh bug atau serangan malware pada satu
komponen.

C. Fleksibilitas dan Kemudahan Pengembangan: Pengembang
dapat menambah, menghapus, atau memodifikasi layanan
sistem tanpa harus memodifikasi atau mengkompilasi ulang
kernel inti. Ini memungkinkan pengembangan yang lebih
cepat dan adaptasi yang lebih mudah terhadap perangkat keras
atau fitur baru.

d. Portabilitas: Kernel yang lebih kecil dan lebih terdefinisi
dengan baik cenderung lebih mudah untuk di-porting ke

arsitektur hardware yang berbeda.

17

9. Kekurangan Mikrokernel:

a. Performa yang Berpotensi Lebih Rendah: Komunikasi
antarproses melalui [PC memerlukan context switch dan
message passing, yang menimbulkan overhead performa
dibandingkan komunikasi langsung di arsitektur monolitik.
Namun, inovasi dalam desain mikrokernel dan hardware
modern telah banyak mengurangi overhead ini.

b. Contoh sistem operasi yang menggunakan atau terinspirasi
mikrokernel antara lain QNX (digunakan di otomotif dan
industri), MINIX, dan sebagian dari arsitektur macOS (XNU
kernel adalah hybrid yang menggabungkan elemen
mikrokernel Mach dan kernel BSD monolitik).

ARSITEKTUR KERNEL ARSITEKTUR MIKROKERNEL
MONOLITIK

L Aplikasi
Aplikasi Pengguna
Pengguna

i File Network Device
user mode System Server Driver
Server Server

|—1 l IPC
M|krokernel

IPC
» Penjadwalan Dasar
- Manajemen Memori Dasar

Kernel

* Manajemen Proses
* Manajemen Memori
«1/0

» Jaringan

* File System

* Driver

t privileged mode

privileged mode privileged mode

Gambar 1.3

18

B. Desain Berbasis Layanan (Service-Oriented OS)

Melanjutkan konsep modularitas dan isolasi yang diperkenalkan
oleh arsitektur mikrokernel, Desain Berbasis Layanan (Service-
Oriented OS - SOOS) memperluas gagasan bahwa fungsionalitas
sistem operasi harus disediakan sebagai kumpulan layanan yang
terdefinisi dengan baik. Dalam SOOS, komponen-komponen sistem
operasi (misalnya, manajemen file, manajemen device, keamanan,
networking) tidak lagi dilihat sebagai bagian integral dari kernel
monolitik yang tak terpisahkan, melainkan sebagai layanan
independen yang dapat diakses melalui antarmuka standar.

Konsep ini mirip dengan arsitektur microservices dalam
pengembangan aplikasi, di mana aplikasi besar dipecah menjadi
layanan-layanan kecil yang independen dan berkomunikasi melalui
API. Dalam konteks sistem operasi:

1. Abstraksi Fungsionalitas: Setiap layanan SO menawarkan
fungsionalitas spesifik melalui APl yang terdefinisi,
menyembunyikan detail implementasi internal.

2. Isolasi Proses: Setiap layanan seringkali berjalan sebagai proses
atau thread terpisah, terisolasi dari layanan lain dan dari kernel
inti. Ini meningkatkan keamanan dan toleransi kesalahan. Jika
satu layanan crash, layanan lain tetap berfungsi dan sistem secara
keseluruhan tidak terganggu.

3. Komunikasi Melalui Pesan: Layanan-layanan ini berkomunikasi
satu sama lain dan dengan aplikasi melalui mekanisme message
passing atau panggilan prosedur jarak jauh (Remote Procedure
Call - RPC), mirip dengan IPC pada mikrokernel.

4. Skalabilitas Dinamis: Karena layanan-layanan bersifat
independen, beberapa instansi dari layanan yang sama dapat

dijalankan secara paralel untuk menangani beban kerja yang

19

10.

meningkat. Ini sangat relevan dalam lingkungan cloud atau
terdistribusi.

Kemudahan Pemeliharaan dan Pembaruan: Layanan dapat
diperbarui, diganti, atau ditambahkan tanpa memengaruhi layanan
lain atau memerlukan reboot sistem. Ini mempercepat siklus
pengembangan dan deployment.

Manfaat Desain Berbasis Layanan:

Peningkatan Keandalan: Isolasi layanan meminimalkan dampak
kegagalan.

Keamanan yang Ditingkatkan: Permukaan serangan diperkecil
karena layanan memiliki privilege yang minimal dan hanya
berinteraksi melalui API yang terkontrol.

Fleksibilitas dan Kustomisasi: Memungkinkan pengembang untuk
memilih dan mencampur layanan yang berbeda, atau bahkan
mengembangkan layanan kustom, untuk memenuhi kebutuhan
spesifik.

Dukungan untuk Komputasi Terdistribusi: Desain berbasis
layanan secara inheren mendukung lingkungan terdistribusi, di
mana layanan dapat berjalan pada node yang berbeda dalam
jaringan.

Meskipun sedikit SO yang sepenuhnya service-oriented dari

awal, banyak SO modern mengadopsi prinsip-prinsip desain ini dalam

komponen-komponennya. Misalnya, dalam sistem operasi cloud,

berbagai fungsi pengelolaan virtual machine, jaringan virtual, dan

penyimpanan seringkali disediakan sebagai layanan terpisah.

20

C. Pendekatan Container dan Virtualisasi

Salah satu inovasi paling transformatif dalam arsitektur sistem
operasi modern adalah kemampuan untuk menjalankan lingkungan
komputasi terisolasi di atas host SO. Ini diwujudkan melalui
virtualisasi dan kontainerisasi, yang keduanya bertujuan untuk
menyediakan isolasi dan efisiensi, tetapi dengan pendekatan yang
berbeda.

1. Konsep Virtualisasi: Virtualisasi memungkinkan satu perangkat
keras fisik (host machine) untuk menjalankan beberapa sistem
operasi virtual (guest operating systems), masing-masing
berfungsi seperti mesin fisik yang mandiri. Ini dicapai dengan
menggunakan lapisan perangkat lunak yang disebut hypervisor
(juga dikenal sebagai Virtual Machine Monitor - VMM).
Hypervisor bertanggung jawab untuk mengelola sumber daya
hardware dan mendistribusikannya ke masing-masing virtual
machine (VM).

2. Ada dua tipe utama hypervisor:

a. Hypervisor Tipe 1 (Bare-Metal Hypervisor): Langsung
berjalan di atas hardware fisik, tanpa memerlukan sistem
operasi host di bawahnya. Hypervisor ini memiliki kendali
langsung atas hardware, yang menghasilkan kinerja yang
sangat tinggi dan keamanan yang kuat. Contoh: VMware
ESXi, Microsoft Hyper-V, Citrix XenServer, KVM (pada
Linux).

b. Hypervisor Tipe 2 (Hosted Hypervisor): Berjalan sebagai
aplikasi di atas sistem operasi host yang sudah ada. Meskipun
lebih mudah dipasang dan digunakan untuk tujuan
pengembangan atau pengujian, kinerjanya sedikit lebih rendah

21

karena harus melalui lapisan SO host. Contoh: VirtualBox,
VMware Workstation, VMware Fusion.

3. Setiap VM mencakup kernel sistem operasi guest yang lengkap,
pustaka sistem, dan aplikasi. Ini membuatnya sangat terisolasi,
tetapi juga memerlukan sumber daya yang signifikan untuk setiap
VM.

4. Konsep Kontainerisasi: Kontainer menawarkan bentuk virtualisasi
yang lebih ringan dan efisien. Berbeda dengan VM yang
memvirtualisasikan seluruh mesin (hardware dan OS), kontainer
memvirtualisasikan sistem operasi di tingkat proses. Artinya,
semua kontainer yang berjalan di satu sost SO berbagi kernel host
yang sama, tetapi setiap kontainer memiliki ruang pengguna
terisolasi sendiri, termasuk sistem file yang terpisah, pustaka, dan
dependensi aplikasi.

5. Teknologi kontainer seperti Docker dan orkestrasi seperti
Kubernetes memanfaatkan fitur kernel Linux (seperti namespaces
untuk isolasi proses dan cgroups untuk alokasi sumber daya)
untuk mencapai isolasi ini.

Perbandingan Virtual Machine vs. Container:

Fitur Kunci Virtual Machine (VM) |Container

Tinggi (Virtualisasi||Sedang (Virtualisasi OS di

Tingkat Isolasi)
seluruh hardware) tingkat proses)

Membutuhkan lebih
Sumber Daya |banyak sumber daya
(CPU, RAM, Disk)

Lebih ringan, berbagi
kernel host

Besar (termasuk OS|Kecil (hanya aplikasi dan
Ukuran Image

guest lengkap) dependensinya)

22

) Lebih lama (mem-boot|Sangat cepat (hanya
Waktu Booting . o
OS guest) memulai proses aplikasi)
Sangat portabel antar /ost|
. Sangat portabel antar
Portabilitas) dengan kernel yang
hypervisor)
kompatibel
Masing-masing VM
Ketergantungan |memiliki kernel = OS|Berbagi kernel OS host
sendiri
K Menjalankan OS yang||Pengembangan,
asus
berbeda, isolasi ketat,|deployment microservices,
Penggunaan . -
pengujian CI/CD, skalabilitas cepat

Arsitektur Virtual
Machine (VM)

Aplikasi |

Guest OS ||

Arsitektur Kontainer

cles

Aplikasi

Guest OS

Virtual Machine I

[Hypervisor

Aplikasi

Pustaka/
Dependen- |

Aplikasi || Aplikasi

Pustaka/
Dependen-
cies

Pustaka/
Dependen-
cies

Container
(Hengangan Kernel)

Host OS (dengan
Kernel)
B J

[Hardware

—J_J

Hardware

Gambar 1.4

23

D. Sistem Operasi Real-Time dan Embedded
Selain sistem operasi umum untuk desktop dan server, ada
kategori khusus yang dirancang untuk kebutuhan sangat spesifik:

Sistem Operasi Real-Time dan Sistem Operasi Embedded.

1. Sistem Operasi Real-Time (RTOS): RTOS adalah jenis sistem
operasi yang dirancang untuk menjamin respons terhadap
peristiwa eksternal dalam batasan waktu yang ketat dan dapat
diprediksi. Berbeda dengan SO umum yang mengutamakan
throughput atau keadilan pembagian waktu CPU, RTOS
memprioritaskan timeliness dan determinism.

a. Hard Real-Time System: Memiliki batasan waktu yang sangat
ketat dan mutlak. Kegagalan memenuhi tenggat waktu dapat
menyebabkan kegagalan sistem yang katastropal (misalnya,
sistem kontrol penerbangan, perangkat medis pendukung
kehidupan).

b. Soft Real-Time System: Memiliki tenggat waktu yang penting
tetapi kegagalan sesekali untuk memenuhinya tidak
menyebabkan bencana total, hanya penurunan kualitas
layanan (misalnya, sistem streaming video, sistem kontrol
game).

2. Karakteristik RTOS:

a. Penjadwalan Preemtif Prioritas Tinggi: Memberikan prioritas
tertinggi pada tugas real-time dan memungkinkannya untuk
menginterupsi tugas berprioritas lebih rendah kapan saja.

b. Latensi Rendah: Meminimalkan waktu yang dibutuhkan untuk
merespons interupsi dan beralih antar tugas.

C. Determinisme: Menjamin bahwa operasi akan diselesaikan
dalam jangka waktu yang dapat diprediksi, bahkan di bawah
beban tinggi.

24

d. Ukuran Minimal: Seringkali dirancang untuk memiliki
Jfootprint memori dan disk yang kecil.

3. Contoh RTOS meliputi QNX, VxWorks, FreeRTOS, dan RT-
Linux.

4, Sistem Operasi Embedded: SO embedded adalah sistem operasi
yang dirancang khusus untuk perangkat embedded—sistem
komputasi yang tertanam di dalam perangkat yang lebih besar dan
dirancang untuk satu atau beberapa fungsi spesifik. Perangkat ini
biasanya memiliki sumber daya komputasi yang terbatas (memori,
CPU, daya) dan seringkali tidak memiliki antarmuka pengguna
grafis tradisional.

5. Karakteristik SO Embedded:

a. Ukuran dan Footprint yang Sangat Kecil: Dioptimalkan untuk
memori dan penyimpanan terbatas.

b. Efisiensi Daya: Dirancang untuk beroperasi dengan konsumsi
daya minimal.

c. Kustomisasi Tinggi: Seringkali sangat disesuaikan dengan
hardware spesifik perangkat.

d. Keandalan dan Stabilitas: Penting untuk operasi jangka
panjang tanpa reboot.

e. Keamanan: Fitur keamanan yang dioptimalkan untuk
perangkat keras terbatas dan lingkungan IoT.

6. SO embedded dapat berupa RTOS (jika membutuhkan timeliness)
atau SO yang lebih umum yang dimodifikasi untuk lingkungan
embedded (misalnya, versi khusus Linux untuk IoT seperti
OpenWrt, atau Android embedded). Contoh perangkat yang
menggunakan SO embedded termasuk router nirkabel, peralatan
rumah tangga pintar, sistem otomotif, perangkat medis, dan sistem

kontrol industri.

25

Sistem Kontrol Industri Perangkat Medis Portable
RTOS OS Embedded

-
Smart Home Device Automotive Infotainment System
RTOS OS Embedded

Gambar 1.5

26

BAB 3: VIRTUALISASI DAN CLOUD
COMPUTING

Dalam era komputasi modern, virtualisasi dan cloud computing
bukan lagi sekadar jargon teknis, melainkan fondasi esensial yang
telah merevolusi cara sistem operasi (SO) berinteraksi dengan
perangkat keras dan bagaimana layanan komputasi disediakan. Kedua
paradigma ini memungkinkan efisiensi sumber daya yang belum
pernah ada sebelumnya, skalabilitas yang fleksibel untuk berbagai
kebutuhan, serta ketahanan sistem yang jauh lebih baik dibandingkan
model komputasi tradisional. Bab ini akan memandu pembaca untuk
memahami secara mendalam konsep dasar virtualisasi, menjelaskan
peran krusial hypervisor dalam memungkinkan fenomena ini, serta
secara komprehensif membandingkan dua pendekatan virtualisasi
yang paling dominan: virtual machine (VM) dan container.
Selanjutnya, kita akan menyelami bagaimana sistem operasi modern
beradaptasi dan berfungsi secara optimal dalam lingkungan virtual,
serta bagaimana mereka terintegrasi erat dengan platform cloud
computing. Bab ini akan diakhiri dengan eksplorasi model inovatif
Sistem Operasi sebagai Layanan (OSaaS) yang semakin populer.

A. Konsep Virtualisasi

Virtualisasi adalah sebuah konsep transformatif dalam ilmu
komputer yang melibatkan penciptaan representasi virtual, bukan
fisik, dari sebuah sumber daya komputasi. Bayangkan sebuah
komputer fisik tunggal yang dapat berperilaku seperti beberapa
komputer yang terpisah secara independen. Itulah esensi virtualisasi.

Ini memungkinkan berbagai sistem operasi, aplikasi, dan konfigurasi

27

lingkungan untuk berjalan secara bersamaan di atas satu set perangkat

keras fisik yang sama, memaksimalkan utilisasi sumber daya dan

mengurangi biaya infrastruktur.

1.
2.

Tujuan utama virtualisasi meliputi:

Konsolidasi Sumber Daya: Mengurangi jumlah server fisik yang

dibutuhkan, yang berarti penghematan biaya hardware, energi

(listrik dan pendinginan), serta ruang data center.

Isolasi: Setiap lingkungan virtual (VM atau container) terisolasi

dari yang lain, sehingga masalah atau crash pada satu lingkungan

tidak akan mempengaruhi yang lain.

Fleksibilitas: Memungkinkan deployment dan manajemen

lingkungan komputasi yang lebih cepat dan mudah.

Portabilitas: Lingkungan virtual dapat dengan mudah dipindahkan

antar server fisik yang berbeda.

Hypervisor (Type 1 & Type 2): Sang Arsitek Virtualisasi

Inti dari teknologi virtualisasi adalah hypervisor, sering juga

disebut Virtual Machine Monitor (VMM). Hypervisor adalah

lapisan perangkat lunak, firmware, atau hardware yang
bertanggung jawab untuk menciptakan dan menjalankan virtual
machine. Ini adalah "otak" di balik kemampuan untuk membagi

sumber daya fisik dan mendistribusikannya secara aman ke VM

yang berbeda.

Hypervisor Tipe 1 (Bare-Metal Hypervisor):

a. Cara Kerja: Hypervisor tipe ini diinstal langsung pada
perangkat keras fisik komputer, tanpa memerlukan sistem
operasi host terlebih dahulu. Ini berarti hypervisor memiliki
kontrol langsung dan penuh atas sumber daya hardware.
Analogi sederhananya adalah, jika perangkat keras adalah
tanah kosong, maka hypervisor tipe 1 adalah kontraktor utama

28

yang langsung membangun fondasi dan dinding-dinding
rumah virtual (VM) di atasnya.

b. Keunggulan: Karena berinteraksi langsung dengan hardware,
hypervisor Tipe 1 menawarkan kinerja yang sangat tinggi
(mendekati kinerja native), stabilitas yang superior, dan
keamanan yang lebih robust karena tidak ada lapisan SO host
yang dapat menjadi titik kerentanan tambahan. Mereka sangat
efisien dalam alokasi sumber daya.

c. Penerapan: Ini adalah pilihan dominan di lingkungan data
center skala besar, cloud computing publik, dan infrastruktur
server enterprise di mana kinerja dan keandalan adalah
prioritas utama.

d. Contoh: VMware ESXi, Microsoft Hyper-V, Citrix XenServer,
dan KVM (Kernel-based Virtual Machine, yang merupakan
bagian dari kernel Linux dan mengubah Linux menjadi
hypervisor Tipe 1).

9. Hypervisor Tipe 2 (Hosted Hypervisor):

a. Cara Kerja: Berbeda dengan Tipe 1, hypervisor Tipe 2 berjalan
sebagai aplikasi perangkat lunak biasa di atas sistem operasi
host yang sudah ada (misalnya, Windows, macOS, atau
Linux). SO host inilah yang bertanggung jawab untuk
mengelola hardware fisik, dan hypervisor Tipe 2 kemudian
mengalokasikan sumber daya virtual dari host ke mesin
virtual. Menggunakan analogi sebelumnya, jika hardware
adalah tanah kosong dan SO host adalah rumah yang sudah
dibangun, maka hypervisor tipe 2 adalah sebuah ruangan
khusus di dalam rumah tersebut yang kemudian dibagi lagi
menjadi "ruang-ruang virtual" (VM).

29

b. Keunggulan: Lebih mudah dipasang dan digunakan untuk
tujuan pengembangan, pengujian sofiware, atau penggunaan
pribadi di mana pengguna ingin menjalankan beberapa SO di
PC mereka tanpa mengubah konfigurasi boot utama. Fleksibel
karena dapat memanfaatkan fitur-fitur SO host.

c. Kekurangan: Kinerja cenderung sedikit lebih rendah
dibandingkan Tipe 1 karena adanya lapisan SO host yang
menjadi perantara antara hypervisor dan hardware fisik.
Keamanan juga sedikit lebih rentan karena ketergantungan
pada keamanan SO host.

d. Contoh: VirtualBox, VMware Workstation, VMware Fusion.

10. Virtual Machine (VM) vs. Container: Dua Pendekatan Isolasi
yang Berbeda

11. Meskipun VM dan container sama-sama bertujuan untuk
menyediakan lingkungan terisolasi untuk aplikasi, mereka
melakukannya dengan cara yang fundamental berbeda di tingkat
arsitektur. Pemahaman perbedaan ini sangat penting dalam
memilih teknologi yang tepat untuk kebutuhan spesifik.

12. Virtual Machine (VM): Virtualisasi Tingkat Hardware Penuh

a. Definisi: VM adalah emulasi lengkap dari sebuah komputer
fisik. Setiap VM bertindak seperti komputer mandiri dengan
komponen hardware virtualnya sendiri (CPU virtual, RAM
virtual, disk virtual, network adapter virtual).

b. Struktur: Di dalam setiap VM, terdapat sistem operasi guest
yang lengkap (termasuk kernel, pustaka sistem, dan
dependensi lainnya) yang berjalan di atas hardware virtual
yang disediakan oleh hypervisor. Di atas SO guest inilah
aplikasi diinstal.

30

c. Isolasi: VM menawarkan tingkat isolasi yang sangat kuat.
Karena setiap VM memiliki kernel SO-nya sendiri dan sumber
daya virtual yang dialokasikan secara independen, masalah
atau bahkan malware di satu VM akan sangat sulit untuk
menyebar ke VM lain atau host. Ini seperti memiliki beberapa
komputer fisik yang terpisah di dalam satu kotak.

d. Konsumsi Sumber Daya: VM cenderung membutuhkan
sumber daya yang lebih besar (CPU, RAM, disk space) karena
setiap VM harus memuat seluruh instance SO guest dari nol.

e. Waktu Booting: Waktu yang dibutuhkan untuk memulai VM
lebih lama karena proses booting SO guest harus diselesaikan.

f. Portabilitas: VM sangat portabel antar hypervisor yang
kompatibel, memungkinkan migrasi lingkungan aplikasi yang
mulus.

g. Kasus Penggunaan Ideal: Menjalankan sistem operasi yang
berbeda pada satu hardware fisik (misalnya, Windows di
Linux), pengujian software di lingkungan yang terisolasi
sepenuhnya, konsolidasi server yang membutuhkan isolasi
maksimum.

13. Container: Virtualisasi Tingkat Sistem Operasi (Ringan)

a. Definisi: Kontainer adalah bentuk virtualisasi yang lebih
ringan dan efisien yang beroperasi pada tingkat sistem operasi.
Ini memungkinkan banyak "lingkungan terisolasi" untuk
berjalan di atas satu sost SO yang sama.

b. Struktur: Semua kontainer yang berjalan pada satu host
berbagi kernel host SO yang sama. Setiap kontainer hanya
berisi aplikasi dan dependensinya (pustaka, runtime,
configuration files) yang diperlukan untuk menjalankan
aplikasi tersebut, tanpa kernel SO guest yang terpisah.

31

c. Isolasi: Meskipun berbagi kernel host, kontainer
menggunakan fitur-fitur kernel SO host seperti namespaces
(untuk mengisolasi proses, network interface, mount points)
dan cgroups (control groups untuk mengalokasikan dan
membatasi sumber daya CPU, memori, [/O) untuk
menciptakan lingkungan yang terisolasi. Isolasi ini kuat untuk
sebagian besar kasus, tetapi secara teoritis sedikit kurang ketat
dibandingkan VM karena berbagi kernel.

d. Konsumsi Sumber Daya: Kontainer jauh lebih ringan dan
membutuhkan lebih sedikit sumber daya dibandingkan VM.
Mereka tidak perlu mengalokasikan RAM atau CPU untuk
kernel SO guest yang terpisah.

e. Waktu Booting: Kontainer sangat cepat untuk di-boot (hanya
dalam hitungan detik) karena mereka tidak perlu melalui
proses booting SO penuh, hanya memulai proses aplikasi.

f. Portabilitas: Kontainer sangat portabel antar host yang
memiliki kernel SO yang kompatibel dan container runtime
yang sama (misalnya, Docker).

g. Kasus Penggunaan Ideal: Pengembangan dan deployment
microservices, Continuous Integration/Continuous
Deployment (CI/CD), serverless computing, dan aplikasi yang
membutuhkan skalabilitas cepat.

Fitur Kunci || Virtual Machine (VM) Container
Lapisan Di atas hardware (oleh||Di atas SO host (oleh
Virtualisasi hypervisor) container runtime)

Tinggi (setiap VM||Sedang (berbagi kernel OS

Tsolasi
So1asl memiliki kernel OS|/hos?)

32

sendiri)

Konsumsi

Sumber Daya

lebih
OS

Membutuhkan
banyak (duplikasi
kernel)

Lebih ringan (berbagi kernel
OS host)

Ukuran Image

Besar (GBs, termasuk

Kecil (MBs, hanya aplikasi

OS guest lengkap) dan dependensinya)
Waktu Booting Lebih lama (mem-boot|Sangat ‘ cepat . (h‘anya
OS guest penuh) memulai proses aplikasi)
o Antar hypervisor yang|Antar host dengan kernel
Portabilitas) .
kompatibel OS yang kompatibel
Masing-masing VM
Dependensi |memiliki kernel —OS|Berbagi kernel OS host
sendiri
K Menjalankan OS yang||Microservices, CI/CD,
a
SUS berbeda, isolasi ketat,||skalabilitas cepat,
Penggunaan .
legacy apps pengembangan agnostik OS

Container Engine

;€

Infrastructure (1)

Virtual

I1ISY

Machines

33

= -
=]
%:u Infrastructure (1)

I

|rawax

A :
fm Container
]

Gambar 1.6 *(Deskripsi Gambar: Dua diagram berdampingan.
Diagram pertama berjudul "Arsitektur Virtual Machine (VM)".
Tunjukkan lapisan "Hardware" di paling bawah. Di atas Hardware,
gambarlah "Hypervisor" (misalnya VMware ESXi, Hyper-V). Di atas
Hypervisor, gambarlah beberapa blok terpisah, masing-masing
berlabel "Virtual Machine". Di dalam setiap blok Virtual Machine,
tunjukkan "Guest OS (Kernel, Pustaka)" dan di atasnya "Aplikasi".
Gunakan panah untuk menunjukkan bahwa Hypervisor mengelola
Hardware.

Diagram kedua berjudul "Arsitektur Kontainer". Tunjukkan
lapisan "Hardware" di paling bawah. Di atas Hardware, gambarlah
"Host OS (dengan Kernel)" (misalnya Linux Kernel). Di atas Host
OS, gambarlah lapisan "Container Runtime" (misalnya Docker
Daemon). Di atas Container Runtime, gambarlah beberapa blok
terpisah, masing-masing berlabel "Container". Di dalam setiap blok
Container, tunjukkan hanya "Aplikasi" dan "Pustaka/Dependencies"
mereka, tanpa Guest OS terpisah. Gunakan panah untuk menunjukkan
bahwa Container Runtime berinteraksi dengan Host OS Kernel.

B. Sistem Operasi dalam Lingkungan Virtual

Ketika sebuah sistem operasi berjalan di dalam sebuah
lingkungan virtual, ia menjadi "tamu" (guest) di atas infrastruktur
yang dikelola oleh Aypervisor. Adaptasi ini mengubah banyak aspek
dari bagaimana SO berinteraksi dengan hardware dan bagaimana ia
dikelola.

Optimasi untuk Lingkungan Virtual: SO modern dirancang
untuk mengenali dan beradaptasi dengan lingkungan virtual. Vendor
hypervisor menyediakan "alat integrasi" (misalnya, VMware Tools

untuk VMware, Hyper-V Integration Services untuk Microsoft

34

Hyper-V) yang diinstal di dalam SO guest. Alat-alat ini berisi driver
yang disebut driver paravirtualisasi (pv-driver). Driver ini
memungkinkan SO guest untuk berkomunikasi lebih efisien dengan
hypervisor daripada mencoba berinteraksi langsung dengan hardware
fisik yang divirtualisasi. Ini mengurangi overhead dan meningkatkan
kinerja I/O (disk, jaringan) serta manajemen CPU. Tanpa driver ini,
SO guest mungkin harus menggunakan emulasi hardware yang lebih
lambat.

1. Manajemen Sumber Daya Virtual:

a. CPU: Hypervisor mengalokasikan siklus CPU dari prosesor
fisik ke setiap VM. Meskipun SO guest "melihat" sejumlah
inti CPU virtual, hypervisor adalah yang bertanggung jawab
untuk menjadwalkan kapan instruksi dari VM tersebut benar-
benar dieksekusi pada inti fisik. Teknik seperti CPU
overcommitment memungkinkan penyedia cloud
mengalokasikan lebih banyak inti CPU virtual daripada yang
ada secara fisik, dengan asumsi bahwa tidak semua VM akan
menggunakan 100% CPU secara bersamaan.

b. Memori: Hypervisor mengelola alokasi memori fisik ke VM.
Teknik seperti memory ballooning memungkinkan hypervisor
untuk merebut kembali memori yang tidak digunakan dari VM
yang sedang berjalan dan mengalokasikannya ke VM lain
yang membutuhkan. SO guest akan "berpikir" memorinya
berkurang dan akan melakukan swapping ke disk virtualnya,
yang kemudian diatur oleh Aypervisor. Ada juga teknik seperti
memory deduplication (juga dikenal sebagai page sharing) di
mana hypervisor dapat mengidentifikasi halaman memori
yang identik di beberapa VM dan menyimpannya hanya sekali
di RAM fisik, menghemat ruang.

35

c. I/O: Hypervisor mengintersep semua permintaan /O dari SO
guest dan menerjemahkannya ke hardware fisik. Dengan
driver paravirtualisasi, komunikasi ini jauh lebih efisien
dibandingkan emulasi hardware tradisional.

2. Manfaat Operasional:

a. Snapshotting dan Cloning: Kemampuan untuk mengambil
snapshot (titik pemulihan) dari VM dan membuat clone
(salinan identik) dari VM sangat mempercepat
pengembangan, pengujian, dan deployment lingkungan.

b. Live Migration: SO guest dapat dipindahkan dari satu server
fisik ke server fisik lain tanpa downtime yang signifikan,
sebuah fitur krusial untuk pemeliharaan server tanpa
mengganggu layanan.

c. Fault Tolerance: Dalam beberapa konfigurasi Aypervisor, VM
dapat secara otomatis di-restart atau di-failover ke host lain
jika host utamanya mengalami kegagalan, meningkatkan
ketersediaan layanan.

d. Resource Pooling: Sumber daya dari beberapa server fisik
dapat digabungkan menjadi satu "kolam" besar, dan VM dapat
dialokasikan dari kolam ini secara dinamis, meningkatkan
efisiensi dan fleksibilitas manajemen.

3. Tantangan: Meskipun banyak manfaat, ada tantangan dalam
menjalankan SO di lingkungan virtual, seperti overhead kinerja
(meskipun minimal dengan paravirtualisasi), kompleksitas
manajemen hypervisor sendiri, dan licensing SO yang perlu
disesuaikan untuk lingkungan virtual.

36

C. Integrasi Sistem Operasi dengan Platform Cloud

Cloud computing pada dasarnya adalah perluasan dari
virtualisasi, di mana sumber daya komputasi (server, penyimpanan,
jaringan, SO) disediakan sebagai layanan melalui internet oleh
penyedia pihak ketiga (misalnya, AWS, Azure, Google Cloud). Sistem
operasi adalah jantung dari hampir setiap layanan cloud.

1. SO sebagai Komponen IaaS (Infrastructure as a Service): Di
lapisan laaS, pengguna mendapatkan akses ke infrastruktur
komputasi virtual, yang paling sering berupa virtual machine
(VM) yang dapat dikonfigurasi. Pengguna memiliki kontrol penuh
atas sistem operasi yang diinstal di VM ini. Penyedia cloud
menawarkan berbagai "gambar" atau "template" SO (Amazon
Machine Images/AMI di AWS, Virtual Machine Images di
Azure/GCP) yang siap digunakan (misalnya, berbagai distribusi
Linux seperti Ubuntu, CentOS, Red Hat, atau versi Windows
Server). Pengguna bertanggung jawab untuk menginstal aplikasi,
mengkonfigurasi SO, dan melakukan patching serta update
keamanan pada SO di dalam VM mereka. Ini sangat mirip dengan
mengelola server fisik, tetapi dengan fleksibilitas dan skalabilitas
cloud.

2. SO sebagai Komponen PaaS (Platform as a Service): Pada lapisan
PaaS, penyedia cloud tidak hanya menyediakan infrastruktur dasar
tetapi juga lingkungan runtime lengkap yang diperlukan untuk
mengembangkan, menjalankan, dan mengelola aplikasi. Ini berarti
sistem operasi yang mendasari dan middleware (misalnya, web
server, database) sepenuhnya dikelola oleh penyedia cloud.
Pengembang hanya perlu fokus pada kode aplikasi mereka dan
menyebarkannya ke platform PaaS. Contohnya adalah Google
App Engine, Azure App Service, atau Heroku. Pengguna tidak

37

perlu khawatir tentang sistem operasi di balik layanan ini.
Meskipun demikian, SO yang mendasarinya (seringkali Linux
atau Windows Server yang dioptimalkan) adalah tulang punggung
dari platform ini.

SO sebagai Komponen SaaS (Software as a Service): Di lapisan
SaaS, penyedia cloud mengelola seluruh stack aplikasi, mulai dari
hardware, sistem operasi, middleware, hingga aplikasi itu sendiri.
Pengguna hanya mengakses aplikasi melalui browser web atau
klien tipis (thin client). Contohnya adalah Microsoft 365, Google
Workspace, atau Salesforce. Pengguna sama sekali tidak perlu
berinteraksi atau mengelola sistem operasi yang menjalankan
layanan-layanan ini. Dari perspektif pengguna akhir, SO yang
mendasari tidak terlihat.

Otomatisasi dan Manajemen SO di Cloud: Integrasi SO dengan

platform cloud sangat bergantung pada otomatisasi. Penyedia cloud

menyediakan alat dan API untuk:

1.
2.

Provisioning: Membuat instance SO virtual dengan cepat.

Scaling: Otomatis menambah atau mengurangi jumlah instance
SO berdasarkan beban kerja.

Monitoring: Memantau kinerja dan kesehatan SO.

Patching dan Updating: Otomatisasi proses pembaruan keamanan
dan fitur SO.

Configuration Management. Mengelola konfigurasi SO secara
konsisten di seluruh instance (misalnya, dengan alat seperti
Ansible, Puppet, Chef). Konsep "Infrastruktur Immutabel"
(Immutable Infrastructure) menjadi populer di cloud, di mana
setelah sebuah instance VM atau container dengan SO di-deploy,
ia tidak pernah dimodifikasi. Jika ada pembaruan atau perubahan,
instance baru dengan versi SO yang telah diperbarui dibuat dan

38

instance lama dihentikan. Ini meningkatkan konsistensi dan
mengurangi risiko "konfigurasi drifi".

Microsoft Azure

f L Server
™
e .
s vusrce [Azure SQL Database Sorvices
- =
Y -

(Deskripsi Gambar: Diagram piramida atau tumpukan (stack) yang

menggambarkan model layanan cloud laaS, PaaS, dan SaaS dari

bawah ke atas.

Paling Bawah (IaaS): Lapisan "Physical Hardware", di atasnya
"Virtualization/Hypervisor", dan di atasnya "Operating System
(Dikelola Pengguna)". Di samping OS, tunjukkan "Aplikasi
Pengguna".

Lapisan Tengah (PaaS): Di atas laaS, tunjukkan "Operating
System", "Middleware", "Runtime" (semua ini Dikelola
Penyedia). Di atasnya, tunjukkan "Aplikasi Pengguna".

Paling Atas (SaaS): Di atas PaaS, tunjukkan "Aplikasi" (Dikelola
Penyedia). Pengguna hanya berinteraksi dengan lapisan ini.
Gunakan panah untuk menunjukkan kontrol: di laaS, pengguna
mengelola OS ke atas; di PaaS, pengguna mengelola aplikasi; di
SaaS, pengguna hanya mengonsumsi aplikasi. Beri label
"Dikelola Pengguna" dan "Dikelola Penyedia" pada setiap lapisan
yang relevan untuk memperjelas tanggung jawab.)*

Cloud computing adalah model pengiriman layanan komputasi

(termasuk server, penyimpanan, database, jaringan, software,

39

analitik, dan intelijen) melalui internet ("awan") dengan model bayar

sesuai penggunaan. Sistem operasi adalah komponen fundamental

dari setiap lapisan cloud.

1.

SO sebagai Bagian dari [aaS (Infrastructure as a Service): Di
lapisan laaS, penyedia cloud menawarkan infrastruktur komputasi
virtual, termasuk virtual machine. Pengguna memilih sistem
operasi yang diinginkan (misalnya, berbagai distribusi Linux,
Windows Server) dari daftar image yang tersedia (Amazon
Machine Images di AWS, Virtual Machine Images di Azure/GCP)
dan menyebarkannya ke dalam lingkungan cloud mereka. Dalam
skenario ini, SO dipertimbangkan sebagai bagian dari
"infrastruktur" yang dikelola oleh pengguna, memberikan kontrol
penuh atas konfigurasi SO.

SO sebagai Bagian dari PaaS (Platform as a Service): Pada lapisan
PaaS, penyedia cloud tidak hanya menyediakan infrastruktur
tetapi juga lingkungan runtime untuk pengembangan dan
deployment aplikasi. Ini berarti SO dan middleware yang
mendasarinya sudah dikelola oleh penyedia cloud. Pengembang
hanya perlu fokus pada kode aplikasi mereka. Meskipun
pengguna tidak berinteraksi langsung dengan SO, SO yang
mendasarinya (misalnya, Linux atau Windows Server) adalah
fondasi bagi platform PaaS seperti Google App Engine, Azure
App Service, atau AWS Elastic Beanstalk.

SO sebagai Bagian dari SaaS (Software as a Service): Di lapisan
SaaS, penyedia cloud mengelola seluruh stack aplikasi, termasuk
SO, infrastruktur, dan aplikasi itu sendiri. Pengguna hanya
mengakses aplikasi melalui browser atau klien tipis (thin client).

Contohnya adalah Microsoft 365, Google Workspace, atau

40

Salesforce. Pengguna tidak perlu khawatir tentang sistem operasi
yang menjalankan aplikasi ini.

4. Manajemen SO di Cloud: Integrasi SO dengan platform cloud
mencakup alat otomatisasi untuk provisioning, scaling,
monitoring, dan patching SO virtual. Cloud providers
menyediakan API dan layanan untuk mengelola siklus hidup SO,
memastikan keamanan, dan ketersediaan tinggi. Konsep
immutable infrastructure, di mana VM atau kontainer dengan SO
tidak pernah dimodifikasi setelah deployment tetapi diganti
dengan versi baru saat wpdate, menjadi umum untuk

meningkatkan konsistensi dan keandalan.

D. Sistem Operasi sebagai Layanan (OSaa¥S)

Sistem Operasi sebagai Layanan (OSaaS) adalah sebuah evolusi
dari model cloud computing di mana akses ke lingkungan sistem
operasi, beserta aplikasi dan layanan terkait, disediakan dan dikelola
sepenuhnya sebagai layanan melalui internet. Berbeda dengan IaaS di
mana pengguna masih bertanggung jawab atas pengelolaan SO, atau
PaaS di mana SO tersembunyi di balik platform, OSaaS menawarkan
pengalaman di mana wuser tidak perlu memikirkan instalasi,
pembaruan, atau maintenance SO sama sekali.

1. Konsep dan Karakteristik: Dalam model OSaaS, pengguna
berlangganan layanan yang memungkinkan mereka untuk
mengakses dan menggunakan lingkungan desktop lengkap yang
berbasis cloud. SO dan aplikasi berjalan di server cloud, dan
pengguna berinteraksi melalui thin client (misalnya, browser web
atau aplikasi desktop ringan) yang hanya menampilkan stream
video dari desktop jarak jauh dan mengirimkan input (klik,
ketikan) kembali ke server.

41

Karakteristik utama OSaaS meliputi:

a. Akses Anywhere, Anytime: Pengguna dapat mengakses
lingkungan SO mereka dari perangkat apa pun (laptop, tablet,
smartphone) dengan koneksi internet.

b. Manajemen oleh Penyedia: Instalasi, patching, update,
keamanan, dan backup SO sepenuhnya ditangani oleh
penyedia layanan. Ini mengurangi beban operasional bagi
pengguna atau organisasi.

c. Skalabilitas On-Demand: Sumber daya (CPU, RAM) untuk
lingkungan OSaaS dapat disekalakan secara dinamis oleh
penyedia sesuai kebutuhan pengguna.

d. Efisiensi Biaya: Pengguna tidak perlu membeli lisensi SO atau
hardware yang mahal, cukup membayar biaya berlangganan.

2. Contoh dan Penerapan: Salah satu contoh nyata OSaaS adalah

Windows 365 dari Microsoft, yang menyediakan "PC Awan"

(Cloud PC) yang dapat di-stream ke perangkat apa pun. Pengguna

dapat memiliki Windows desktop yang dipersonalisasi dan

aplikasi mereka tersedia secara instan dari cloud. Contoh lain
termasuk layanan desktop-as-a-service (DaaS) dari penyedia
cloud lainnya yang menawarkan lingkungan desktop virtual.

3. OSaaS sangat cocok untuk:

a. Pekerja remote atau hybrid yang membutuhkan akses
konsisten ke lingkungan kerja mereka dari berbagai lokasi dan
perangkat.

b. Institusi pendidikan yang ingin menyediakan lingkungan
komputasi standar untuk siswa.

c. Bisnis kecil dan menengah yang ingin mengurangi biaya TI

dan kompleksitas manajemen infrastruktur.

42

d. Lingkungan dengan kebutuhan keamanan tinggi, di mana data
tidak pernah meninggalkan data center.

Apa Perbedaan
VM dan Container

(Deskripsi Gambar: Dua diagram berdampingan. Diagram pertama
berjudul "Arsitektur Virtual Machine (VM)" menunjukkan lapisan
"Hardware" di paling bawah, di atasnya ada "Hypervisor". Di atas
Hypervisor ada beberapa blok "Virtual Machine", dan setiap blok VM
berisi "Guest OS" dan "Aplikasi". Diagram kedua berjudul
"Arsitektur Kontainer" menunjukkan lapisan "Hardware" di paling
bawah, di atasnya ada "Host OS (dengan Kernel)". Di atas Host OS
ada lapisan "Container Runtime" (misalnya Docker). Di atas
Container Runtime ada beberapa blok "Container", dan setiap blok
Container hanya berisi "Aplikasi" dan "Pustaka/Dependencies"
mereka, tanpa OS guest terpisah, semua berbagi kernel host.
Sertakan keterangan untuk setiap bagian diagram.)

Cloud Computing Overview

PaaS

A 2 %

Physical Servers, Operating Database Cloud-hosted
data center networking, Systems management & applications
storage development tools

43

(Deskripsi Gambar: Diagram piramida atau tumpukan (stack) yang
menggambarkan model layanan cloud laaS, PaaS, dan SaaS. Di
bagian paling bawah (laaS) tunjukkan "Hardware", di atasnya
"Virtualisasi”, dan di atasnya "OS (User-managed)". Di lapisan
tengah (PaaS) tunjukkan "OS", "Middleware", "Runtime" (Provider-
managed). Di lapisan paling atas (SaaS) tunjukkan "Aplikasi"”
(Provider-managed). Gunakan ikon atau label untuk menunjukkan di
mana SO berinteraksi di setiap lapisan.)

SOFTWARE
]”} N AS A SERVICE

NETWORKS APP SERVER <> ¢

PCs MOBILE
j & 101

101

DATABASE CODES

(Deskripsi ~ Gambar: Diagram yang menunjukkan seorang
"Pengguna" yang berinteraksi dengan "Perangkat
(Laptop/Tablet/Smartphone)” tipis. Dari perangkat tersebut, panah
mengarah ke "Internet/Cloud". Di dalam cloud, gambarlah "Server"
vang menjalankan "Sistem Operasi” dan "Aplikasi". Tunjukkan panah
dua arah antara perangkat pengguna dan server di cloud,
melambangkan streaming desktop dan input. Berikan keterangan
bahwa OS dan aplikasi "Dikelola oleh Penyedia Layanan".)

44

BAB 4: SISTEM OPERASI MOBILE DAN
PERANGKAT RINGAN

Bab ini akan membahas secara mendalam mengenai sistem
operasi (OS) mobile dan karakteristik perangkat ringan yang
menggunakannya. Kita akan menjelajahi ciri khas OS mobile,
bagaimana mereka mengelola daya dan konektivitas, tantangan
fragmentasi dan keamanan yang dihadapi, serta perbandingan antara
dua OS mobile paling dominan: Android dan iOS.

A. Ciri Khas OS Mobile

Sistem operasi mobile dirancang dari awal dengan asumsi
batasan dan fitur unik yang tidak ditemukan pada SO desktop
tradisional. Ciri khas ini membentuk fundamental desain dan
fungsionalitasnya:

e Antarmuka Pengguna Berbasis Sentuhan (Touch-Centric Ul): Ini
adalah perbedaan paling mencolok. OS mobile didesain untuk
interaksi langsung melalui layar sentuh multi-touch, bukan mouse
dan keyboard. Ini melibatkan elemen Ul yang besar, gesture
intuitif (cubit untuk zoom, swipe untuk navigasi), dan keyboard
virtual.

e Optimalisasi Daya (Power Efficiency): Perangkat mobile sangat
bergantung pada baterai. Oleh karena itu, manajemen daya adalah
prioritas utama. OS mobile mengimplementasikan berbagai teknik
untuk menghemat baterai, seperti:

o Manajemen CPU Dinamis: Mengurangi frekuensi CPU atau

mematikannya saat tidak diperlukan.

45

o

Manajemen Memori Agresif: Menutup atau menangguhkan
aplikasi di latar belakang secara agresif untuk mengosongkan
RAM dan menghemat daya.

Mode Tidur Dalam (Deep Sleep Modes): Memasuki mode
daya rendah ekstrem saat perangkat tidak aktif.

Konektivitas Nirkabel yang Meluas: OS mobile dirancang untuk

selalu terhubung, mendukung berbagai teknologi nirkabel secara

native:

o

Jaringan Seluler (2G/3G/4G/5G): Konektivitas data dan suara
di mana saja.

Wi-Fi: Konektivitas kecepatan tinggi di area lokal.

Bluetooth: Untuk pairing dengan perangkat wearable,
headphone, atau aksesoris lainnya.

NFC (Near Field Communication): Untuk pembayaran
nirsentuh dan pertukaran data jarak dekat.

Integrasi Sensor yang Mendalam: Perangkat mobile dilengkapi

dengan beragam sensor yang sangat terintegrasi dengan OS:

o

Akselerometer dan Giroskop: Untuk mendeteksi orientasi
perangkat dan gerakan (misalnya, rotasi layar, gaming).

GPS (Global Positioning System): Untuk layanan lokasi dan
navigasi.

Sensor Cahaya Sekitar: Untuk menyesuaikan kecerahan layar
secara otomatis.

Sensor Sidik Jari/Pengenalan Wajah: Untuk otentikasi
biometrik.

Barometer, Kompas Magnetik, dll.: Untuk data lingkungan

tambahan.

Manajemen Aplikasi dan Ekosistem Aplikasi: OS mobile

beroperasi dalam ekosistem aplikasi yang ketat dan terpusat (App

46

Store, Google Play Store). OS menyediakan kerangka kerja untuk

instalasi, pembaruan, dan sandboxing aplikasi.

o Sandboxing: Setiap aplikasi berjalan dalam lingkungan
terisolasi untuk mencegahnya mengakses data atau fungsi
aplikasi lain tanpa izin eksplisit pengguna, serta melindungi
sistem inti.

o Model Izin (Permission Model): Pengguna secara granular
mengontrol izin yang diberikan kepada setiap aplikasi
(misalnya, akses kamera, kontak, lokasi).

Ukuran Footprint yang Kecil dan Efisien: Mengingat keterbatasan

hardware perangkat mobile (RAM, penyimpanan), OS mobile

dirancang untuk memiliki footprint yang sangat kecil dan efisien
dalam penggunaan sumber daya.

Fokus pada Pengalaman Pengguna (User Experience): Prioritas

tinggi pada responsivitas, smooth scrolling, dan transisi antarmuka

yang mulus untuk pengalaman pengguna yang menyenangkan.

Mobile OS

47

1. Ikon baterai yang sedang diisi atau indikator daya rendah,

menunjukkan pentingnya efisiensi energi.
2. lkon konektivitas (Wi-Fi, 5G, Bluetooth) yang menyala.
3. Simbol sensor (misalnya, giroskop, lokasi GPS) di sekitar

perangkat mobile.

4, Tampilan prompt izin aplikasi (misalnya, "lzinkan aplikasi X

mengakses lokasi Anda?"). Semua elemen harus mengarah ke

smartphone atau tablet sebagai pusatnya.)*

B. Manajemen Daya dan Konektivitas

Daya tahan baterai dan konektivitas yang andal adalah dua

faktor penentu utama keberhasilan perangkat mobile. Sistem operasi

mobile memiliki mekanisme canggih untuk mengelola kedua aspek

ini secara optimal.

e Manajemen Daya Lanjut:

o

Doze Mode (Android) / Low Power Mode (10S): Ini adalah
fitur di mana OS secara cerdas menunda aktivitas aplikasi
latar belakang yang tidak penting ketika perangkat tidak
bergerak dan layar mati untuk jangka waktu tertentu.
Notifikasi jaringan, sinkronisasi, dan tugas background
lainnya digabungkan dan diproses secara periodik dalam
maintenance window singkat, lalu perangkat kembali tidur. Ini
secara drastis mengurangi konsumsi daya saat perangkat tidak
digunakan.

App Standby (Android): Jika aplikasi tidak digunakan selama
beberapa waktu, OS akan menempatkannya dalam status
standby, membatasi aksesnya ke sumber daya jaringan dan
CPU. Aplikasi hanya akan aktif kembali saat pengguna

meluncurkannya.

48

o

Penjadwalan Tugas Bertenaga-Sadar: OS mengoptimalkan
penjadwalan proses dan layanan agar hardware (terutama
CPU dan radio) dapat memasuki mode daya rendah sesering
mungkin. Ini termasuk mengumpulkan tugas-tugas kecil
menjadi satu burst untuk meminimalkan waktu bangun dari
tidur.

Optimasi Layar: Layar adalah salah satu komponen paling
haus daya. OS mobile secara aktif mengelola kecerahan
adaptif (berdasarkan sensor cahaya sekitar), timeout layar
otomatis, dan mode Always-On Display yang hemat daya
(terutama pada layar OLED).

Manajemen Komponen Hardware: OS mengelola daya ke
komponen hardware lain seperti GPU, sensor, dan radio
nirkabel, mematikan atau menguranginya saat tidak aktif
digunakan.

e Manajemen Konektivitas yang Adaptif: SO mobile harus

memastikan konektivitas yang mulus dan efisien di berbagai jenis

jaringan.

O

Peralihan Jaringan Otomatis: OS secara cerdas beralih antara
Wi-Fi dan jaringan seluler (misalnya, dari 4G ke 5Q)
berdasarkan kekuatan sinyal, kecepatan, dan ketersediaan,
seringkali tanpa intervensi pengguna.

Hotspot Seluler dan Tethering: Kemampuan untuk berbagi
koneksi internet perangkat mobile dengan perangkat lain
melalui Wi-Fi, Bluetooth, atau USB, yang sepenuhnya
dikelola oleh OS.

Virtual Private Network (VPN) Support: OS menyediakan
dukungan native atau API untuk VPN, memungkinkan

49

pengguna untuk membuat koneksi jaringan yang aman dan
terenkripsi.

Optimasi Penggunaan Data: OS seringkali menyediakan fitur
untuk memantau penggunaan data seluler dan memungkinkan
pengguna untuk mengatur batas data atau membatasi
penggunaan data latar belakang untuk aplikasi tertentu.
Bluetooth Low Energy (BLE): Dukungan untuk BLE
memungkinkan perangkat untuk terhubung dengan aksesori
seperti wearable dengan konsumsi daya yang sangat rendah,
memperluas ekosistem perangkat.

C. Fragmentasi dan Keamanan

Dua tantangan terbesar yang dihadapi oleh sistem operasi

mobile, terutama Android, adalah fragmentasi dan keamanan.

Fragmentasi: Fragmentasi mengacu pada beragamnya versi OS,

ukuran layar, resolusi, spesifikasi hardware, dan modifikasi

software (kulit Ul, aplikasi bloatware) yang ada dalam satu

ekosistem.

O

Fragmentasi Android: Ini adalah masalah yang sangat
menonjol di Android. Ada banyak produsen perangkat yang
berbeda, dan masing-masing dapat memodifikasi Android
Open Source Project (AOSP) untuk perangkat mereka.
Akibatnya, pembaruan OS seringkali tertunda atau bahkan
tidak pernah sampai ke perangkat lama, menciptakan
ekosistem di mana banyak perangkat menjalankan versi
Android yang berbeda dan terkadang sudah usang. Hal ini
menyulitkan pengembang aplikasi untuk memastikan aplikasi
mereka berfungsi dengan baik di semua perangkat dan versi,

50

serta menyulitkan pengguna untuk mendapatkan fitur dan
patch keamanan terbaru.

Fragmentasi i0OS: 10S memiliki tingkat fragmentasi yang
sangat rendah. Karena Apple mengontrol hardware dan
software, mereka dapat mendorong pembaruan OS ke hampir
semua perangkat iOS secara bersamaan dan konsisten. Ini
memastikan sebagian besar pengguna memiliki versi OS

terbaru dengan fitur dan keamanan terkini.

Dampak Fragmentasi:

o

Pengalaman Pengguna yang Tidak Konsisten: Fitur-fitur baru
OS mungkin tidak tersedia di semua perangkat.
Pengembangan Aplikasi yang Lebih Sulit: Pengembang harus
menguji dan mendukung banyak versi OS dan konfigurasi
hardware.

Risiko Keamanan yang Meningkat: Perangkat yang
menjalankan versi OS lama seringkali tidak menerima patch
keamanan, sehingga lebih rentan terhadap eksploitasi.

Keamanan pada OS Mobile: Keamanan adalah aspek krusial

mengingat data sensitif yang disimpan dan diproses di perangkat

mobile. OS mobile modern memiliki berbagai mekanisme

keamanan:

o

Sandboxing Aplikasi: Seperti yang disebutkan, setiap aplikasi
berjalan dalam lingkungan terisolasi, mencegah satu aplikasi
untuk mengakses atau merusak data aplikasi lain atau sistem
inti tanpa izin eksplisit.

Model Izin yang Granular: Pengguna harus secara eksplisit
memberikan izin kepada aplikasi untuk mengakses hardware
atau data sensitif (kamera, mikrofon, lokasi, kontak). OS

mobile modern semakin memperketat kontrol izin ini.

o1

Secure Boot: Proses booting diverifikasi secara kriptografis
dari firmware ke kernel hingga sistem file untuk memastikan
tidak ada malware yang mengubah komponen sistem saat
booting.

Enkripsi Data Penuh (Full-Disk Encryption): Sebagian besar
perangkat mobile modern mengenkripsi seluruh penyimpanan
secara default, melindungi data bahkan jika perangkat dicuri.
Pembaruan Keamanan Reguler: OS mobile secara rutin
menerima patch keamanan untuk mengatasi kerentanan yang
baru ditemukan. Namun, fragmentasi dapat menghambat
penyebaran patch ini di seluruh ekosistem.

Hardware-Based Security: Pemanfaatan fitur keamanan
hardware seperti Trusted Platform Module (TPM) atau Secure
Enclave (di perangkat Apple) untuk menyimpan kunci
kriptografi atau data biometrik secara aman.

Verifikasi Aplikasi: Baik Google Play Protect (Android)
maupun proses peninjauan App Store (10S) bertujuan untuk
memindai aplikasi dari malware sebelum atau sesudah

diunduh oleh pengguna.

D. Perbandingan Android dan iOS

Android dan 10S adalah dua raksasa yang mendominasi pasar

sistem operasi mobile global. Meskipun keduanya menawarkan

fungsionalitas inti yang serupa (seperti multitasking, akses internet,

kamera, dll.), filosofi desain, model bisnis, dan ekosistem mereka

sangat berbeda, yang pada akhirnya membentuk pengalaman

pengguna yang berbeda pula. Memahami perbedaan fundamental ini

penting untuk mengapresiasi kekuatan dan kelemahan masing-masing

platform.

52

Fitur Kunci

Android

10S

Pengembang
Utama

Google (sebagian besar

open source)

Apple Inc. (proprietary)

Berbasis lisensi open
source (AOSP) dengan
layanan Google Mobile

Terintegrasi vertikal:
hardware (iPhone, iPad) dan

Model Services (GMS) sebagai|software (10S) terikat. Apple
Bisnis proprietary. Google|mendapatkan pendapatan dari
mendapatkan pendapatan|penjualan hardware dan
dari periklanan, layanan,|lkomisi App Store.
dan penjualan aplikasi.
Terbuka & Fleksibel:
Menekankan Tertutup & Terintegrasi:
kustomisasi, pilihan|Menekankan kesederhanaan,
) perangkat yang luas dari|konsistensi, performa
Filosofi . .
Desai berbagai produsen, dan|optimal, dan keamanan
esain
interoperabilitas. melalui kontrol ketat pada
Memberikan lebih|jekosistem hardware dan
banyak kontrol kepadajjsoftware.
pengguna.
Sangat luas, dari puluhan
bahkan ratusan produsen
) (Samsung, Xiaomi,|Terbatas pada perangkat yang
Ekosistem) . .
Oppo, dll.) dengan|/diproduksi Apple saja
Perangkat . :
rentang harga dan||(iPhone, iPad).

spesifikasi yang sangat

beragam.

53

Kustomisasi
Ul

Tinggi. Pengguna dapat
mengubah launcher,

widget, icon pack,

keyboard, dan tema

ekstensif.
Juga
membuat skin Ul kustom

secara
Produsen dapat
(misalnya, Samsung One
Ul, Xiaomi MIUI).

Rendah. Kustomisasi terbatas

pada wallpaper, penataan

yang
sangat

icon, dan widget
disediakan. Ul

konsisten di semua perangkat

inti

dan versi.

Distribusi
Aplikasi

Store:
terbuka.
dapat

Google
Lebih

Pengembang

Play

mengunggah aplikasi
relatif lebih mudah. Juga
mendukung sideloading|
dari

(instalasi aplikasi

luar toko resmi).

Apple App Store: Sangat
ketat. Semua aplikasi melalui
proses peninjauan yang ketat
dari Apple untuk kualitas,
keamanan, dan privasi.
Sideloading sangat dibatasi
untuk

(biasanya hanya

pengembangan).

Fragmentasi
OS

Tinggi. Banyak versi
Android yang berbeda
beredar karena produsen
perangkat dan operator
telekomunikasi sering
tidak

merilis pembaruan. Ini

menunda atau

menyulitkan developer

dan menjadi celah

keamanan.

Rendah.
kontrol penuh atas hardware

Apple memiliki
dan software, memungkinkan
pembaruan OS dirilis secara
ke
perangkat

konsisten dan cepat

sebagian besar

yang didukung.

Pembaruan

Tergantung produsen

Dikontrol penuh oleh Apple.

o4

oS

perangkat dan operator.
Seringkali lambat atau
tidak

perangkat lama. Google

tersedia untuk
berupaya mengatasi ini
dengan Project Treble
dan Mainline.

Pembaruan biasanya dirilis
secara serentak ke semua
perangkat yang didukung,
memastikan pengguna
mendapatkan fitur dan patch

keamanan terbaru.

Keamanan

Mengandalkan
sandboxing, model izin,
Google Play Protect, dan
Boot.
fragmentasi

Secure Namun,

dapat
menimbulkan celah
karena

tidak
menerima patch. Risiko
sedikit lebih

karena

keamanan
perangkat lama

malware

tinggi
keterbukaan platform.

Sangat kuat. Mengandalkan
sandboxing, model izin yang
ketat, Secure Enclave (untuk
biometrik/kriptografi), proses
peninjauan App Store yang
ketat. Risiko malware lebih
rendah karena ekosistem

yang terkontrol.

Integrasi
Ekosistem

Terintegrasi dengan
layanan Google (Gmail,
Photos)

dari

Maps, Drive,

dan hardware
berbagai produsen.
Interoperabilitas antar

brand bisa bervariasi.

Integrasi vertikal yang sangat
erat dengan hardware Apple
(iPhone, iPad, Mac, Apple
Watch, AirPods) dan layanan
(iCloud,
FaceTime).

Apple iMessage,

Menawarkan
yang
mulus antar perangkat Apple.

pengalaman sangat

Asisten

Google Assistant (sangat

Siri (terintegrasi dengan

55

Suara terintegrasi dengan|ekosistem Apple, fokus pada
layanan Google dan|jtugas-tugas perangkat).
pengetahuan web).

Berbagai segmen pasar,
Ketersediaan ||dari entry-level hingga||Segmen pasar premium.

flagship.

10:25

Tuc.Apr23 @ 72°

1035 @

Comos Amsos e Henoros
Amoata 6iozol ptoucics Akk Proel

. =90

4

Android

(Deskripsi Gambar: Dua screenshot berdampingan. Satu
menunjukkan Home Screen Android (bisa pilih stock Android seperti
Google Pixel, atau contoh Ul populer seperti Samsung One Ul untuk
menunjukkan kustomisasi) dengan widget, berbagai icon, dan
notification panel. Yang lainnya menunjukkan Home Screen i0OS
dengan icon aplikasi yang rapi dalam grid, widget khas iOS, dan
Control Center atau Notification Center. Fokus pada perbedaan
visual antara kedua OS.)

56

BAB 5. SISTEM OPERASI JARINGAN DAN
TERDISTRIBUSI

Dalam lanskap komputasi modern, interkoneksi perangkat
menjadi semakin vital. Sistem operasi tidak lagi beroperasi secara
terisolasi pada satu mesin, melainkan harus mampu berinteraksi dan
mengelola sumber daya yang tersebar di berbagai node dalam sebuah
jaringan. Bab ini akan membahas dua konsep fundamental dalam
domain ini: Sistem Operasi Jaringan (Network Operating System) dan
Sistem Operasi Terdistribusi (Distributed Operating System). Kita
akan mengeksplorasi perbedaan mendasar di antara keduanya,
menyelami bagaimana sumber daya dikelola dalam lingkungan
terdistribusi, serta meninjau contoh sistem operasi yang dirancang
khusus untuk memenuhi kebutuhan komputasi jaringan dan
terdistribusi, seperti Google Fuchsia dan Plan 9. Pemahaman terhadap
arsitektur ini krusial untuk menghadapi tantangan dan peluang dalam
era komputasi yang semakin terhubung.

A. Sistem Operasi Jaringan (Network Operating

System)

Sistem Operasi Jaringan (NOS) adalah jenis sistem operasi yang
dirancang khusus untuk mendukung komputer pribadi, workstation,
dan, yang paling utama, server agar dapat berfungsi dalam sebuah
jaringan. Tujuan utama NOS adalah untuk memungkinkan berbagai
komputer (klien) dalam jaringan untuk berbagi sumber daya
perangkat keras dan perangkat lunak yang tersebar di seluruh server
jaringan. NOS memfasilitasi komunikasi antar node dan menyediakan
layanan jaringan yang esensial.

S7

Definisi dan Fungsi Utama: NOS adalah sistem operasi yang
menjalankan server dan memungkinkan client untuk berbagi file,
printer, aplikasi, dan sumber daya jaringan lainnya. NOS memiliki
kemampuan untuk mengenali dan merespons permintaan dari
berbagai pengguna di jaringan. Fungsi utamanya meliputi:

o

Manajemen Sumber Daya Jaringan: Mengontrol akses ke
sumber daya bersama seperti file server, print server, dan
application server. NOS memastikan bahwa beberapa
pengguna dapat mengakses sumber daya ini secara bersamaan
tanpa konflik.

Manajemen Pengguna dan Grup: Mengelola akun pengguna,
otentikasi (memverifikasi identitas pengguna), dan otorisasi
(menentukan hak akses pengguna terhadap sumber daya).
NOS memungkinkan administrator untuk membuat grup
pengguna dengan hak akses tertentu, menyederhanakan
manajemen keamanan.

Keamanan Jaringan: Menerapkan kebijakan keamanan seperti
firewall, sistem deteksi intrusi, dan kontrol akses berbasis
peran (Role-Based Access Control/RBAC) untuk melindungi
data dan sumber daya dari akses tidak sah.

Direktori Layanan: Menyediakan layanan direktori (misalnya,
Active Directory di Windows Server, LDAP di Linux) yang
menyimpan informasi tentang pengguna, komputer, dan
sumber daya jaringan, memudahkan pencarian dan
pengelolaan objek di jaringan.

Dukungan Protokol Jaringan: Membangun dan mengelola
network stack yang mendukung berbagai protokol komunikasi
(TCP/IP, UDP, DNS, DHCP, SMB/CIFS, NFS),
memungkinkan interkonektivitas yang luas.

58

o

Manajemen Konfigurasi dan Pembaruan: Memungkinkan
administrator untuk mengelola konfigurasi jaringan dari satu
lokasi terpusat dan menyebarkan pembaruan atau patch ke
client dalam jaringan.

Avrsitektur Klien-Server: NOS umumnya beroperasi dalam model
arsitektur klien-server. Dalam model ini, server adalah komputer
kuat yang menjalankan NOS dan menyediakan layanan,
sementara klien adalah komputer pengguna yang mengakses
layanan tersebut.

o

Server: Bertanggung jawab untuk menyimpan file, mengelola
database, menjalankan aplikasi bisnis, dan menangani
permintaan client.

Klien: Mengirimkan permintaan ke server dan menampilkan
informasi yang diterima. Meskipun klien juga memiliki sistem
operasinya sendiri (misalnya, Windows 11, macOS), mereka
menggunakan layanan jaringan yang disediakan oleh NOS di
server.

Contoh Sistem Operasi Jaringan:

O

Windows Server: Seri sistem operasi server dari Microsoft
(misalnya, Windows Server 2019, 2022). Sangat populer di
lingkungan enterprise untuk Active Directory, file sharing,
web hosting (11S), dan aplikasi bisnis berbasis Windows.
Linux (misalnya, Ubuntu Server, Red Hat Enterprise Linux,
CentOS): Distribusi Linux sangat dominan di lingkungan
server untuk web server (Apache, Nginx), database server
(MySQL, PostgreSQL), file server (NFS, Samba), dan layanan
jaringan lainnya. Fleksibilitas, stabilitas, dan sifat open
source-nya menjadikannya pilihan utama.

59

o Unix (misalnya, Solaris, HP-UX, AIX): Sistem operasi
enterprise yang robust, meskipun penggunaannya telah
menurun dibandingkan Linux.

Arsitektur Sistem Operasi Jaringan
(Klien-Server)

Server
Permintaan Layanan dengan Network
Komputer Klien .
g (=]~ Printers

Komputer Klien

A

Respons Layanan/Sumber Daya

A

Server
nengan Network Oper-

(Deskripsi Gambar: Diagram yang menunjukkan beberapa
"Komputer Klien" (misalnya Laptop, Desktop) yang terhubung ke
sebuah "Jaringan” (misalnya ikon awan atau garis penghubung). Di
sisi lain Jaringan, ada sebuah "Server" besar yang berlabel "Server
dengan Network Operating System (NOS)". Tunjukkan panah dua
arah antara Klien dan Server melalui Jaringan, dengan label
"Permintaan Layanan™ dari Klien ke Server dan "Respons
Layanan/Sumber Daya" dari Server ke Klien. Di dalam Server, bisa
ditunjukkan ikon atau label untuk "Shared Files", "Shared Printers",
"Applications" untuk menjelaskan sumber daya yang dibagi.)

60

B. Sistem Operasi Terdistribusi (Distributed Operating
System)
Berbeda dengan Sistem Operasi Jaringan yang membedakan
secara jelas peran klien dan server, Sistem Operasi Terdistribusi
(DOS) mengambil konsep manajemen jaringan ke tingkat yang lebih
tinggi. DOS bertujuan untuk mengelola sekumpulan komputer yang
terhubung dalam sebuah jaringan sebagai satu sistem komputasi
tunggal yang kohesif. Dari sudut pandang pengguna, semua mesin ini
berfungsi seperti satu mesin tunggal, menyembunyikan kompleksitas
dari infrastruktur yang mendasarinya.
o Definisi dan Tujuan: Sistem Operasi Terdistribusi adalah
kumpulan prosesor independen yang saling berkomunikasi
melalui jaringan, dan dari perspektif pengguna, sistem ini tampak
sebagai satu komputer tunggal yang terpadu. Tujuan utamanya
adalah untuk menciptakan transparansi jaringan, di mana
pengguna tidak perlu tahu di mana sumber daya atau proses
sebenarnya berada atau dijalankan.
o Karakteristik Kunci DOS:
o Transparansi (Transparency): Ini adalah karakteristik paling
penting. DOS berusaha menyembunyikan sifat terdistribusi
dari pengguna. Berbagai jenis transparansi meliputi:
= Transparansi Lokasi: Pengguna tidak perlu tahu di mana
sumber daya (file, printer, proses) berada secara fisik di
jaringan.

= Transparansi Akses: Pengguna dapat mengakses sumber
daya di mana pun mereka berada di jaringan dengan cara
yang seragam.

= Transparansi Konkurensi: Banyak pengguna dapat berbagi
sumber daya tanpa intervensi.

61

= Transparansi Kegagalan: Sistem dapat terus berfungsi
meskipun beberapa komponen mengalami kegagalan.
= Transparansi Replikasi: Jika suatu sumber daya direplikasi
untuk ketersediaan, pengguna tidak menyadarinya.
Skalabilitas: Kemampuan untuk dengan mudah menambah
atau mengurangi node dalam sistem untuk mengakomodasi
beban kerja yang bervariasi tanpa mengganggu operasi.
Konkurensi: Memungkinkan eksekusi paralel dari banyak
proses di berbagai node, meningkatkan throughput.
Toleransi Kesalahan (Fault Tolerance): Dirancang untuk terus
beroperasi meskipun ada kegagalan sebagian pada node
tertentu, biasanya melalui replikasi data atau mekanisme
failover.
Ketersediaan Tinggi (High Availability): Memastikan bahwa
layanan dan sumber daya selalu tersedia bagi pengguna.
Keterbukaan (Openness): Kemampuan untuk dengan mudah
memperluas atau memodifikasi sistem, mendukung protokol
standar dan APl yang memungkinkan komponen dari vendor
berbeda untuk berinteraksi.

Perbedaan NOS vs. DOS: Seringkali terjadi kebingungan antara
NOS dan DOS. Perbedaan utamanya terletak pada tingkat
abstraksi dan transparansi yang ditawarkan.

o

NOS: Pengguna sadar bahwa mereka mengakses sumber daya
di server terpisah (misalnya, "\server\shared_ folder"). NOS
mengelola koneksi antara klien dan server.

DOS: Pengguna melihat semua sumber daya sebagai bagian
dari satu sistem global (misalnya, mengakses file tanpa
mengetahui di server fisik mana file itu disimpan). DOS

62

mengelola pool sumber daya yang terdistribusi seolah-olah itu
adalah satu pool tunggal.

4)
Aplikasi Pengguna

A 4

Sistem Operasi Terdistribusi (DOS)

$ 3
= = =

Server 1 Server 2 Server N

_ J

C. Manajemen Sumber Daya Terdistribusi
Manajemen sumber daya dalam sistem operasi terdistribusi jauh
lebih kompleks daripada di sistem tunggal. DOS harus secara efisien
mengelola proses, memori, dan sistem file yang tersebar di banyak
node, sambil mempertahankan transparansi.
e Manajemen Proses Terdistribusi:
o Penjadwalan Tugas: DOS harus menentukan node mana yang
paling sesuai untuk menjalankan suatu proses atau tugas,

63

berdasarkan ketersediaan sumber daya (CPU, memori), beban
jaringan, atau bahkan lokasi data.

Migrasi Proses: Kemampuan untuk memindahkan proses yang
sedang berjalan dari satu node ke node lain (misalnya, untuk
load balancing atau toleransi kesalahan).

Komunikasi Antarproses (IPC) Terdistribusi: Mekanisme
untuk proses yang berjalan di node berbeda dapat saling
berkomunikasi secara transparan (misalnya, melalui Remote
Procedure Call/RPC atau message passing).

Sinkronisasi dan Koherensi: Memastikan bahwa peristiwa
yang terjadi di node berbeda disinkronkan dengan benar
(misalnya, menggunakan logical clocks atau vector clocks)
dan bahwa data yang dibagikan tetap konsisten di seluruh
sistem.

Manajemen Memori Terdistribusi:

o

Memori Bersama Terdistribusi (Distributed Shared
Memory/DSM): Sebuah abstraksi yang memungkinkan proses
di node berbeda untuk mengakses ruang alamat virtual
bersama, seolah-olah mereka berada di satu mesin. DOS
mengelola replikasi dan koherensi halaman memori di antara
node.

Penukaran dan Paging Terdistribusi: Mekanisme untuk
mengelola penggunaan memori di seluruh sistem, termasuk
paging data ke atau dari penyimpanan terdistribusi.

Sistem File Terdistribusi (Distributed File System/DFS): DFS
memungkinkan pengguna untuk mengakses file yang disimpan di
berbagai server jaringan seolah-olah file tersebut berada di
penyimpanan lokal. DFS bertanggung jawab untuk:

64

o Transparansi Lokasi dan Akses: Pengguna tidak perlu tahu di
server mana file disimpan.

o Replikasi dan Caching: Mereplikasi file di beberapa lokasi
atau menyimpan cache di client untuk meningkatkan
ketersediaan dan kinerja.

o Koherensi Data: Memastikan bahwa semua salinan file yang
direplikasi tetap konsisten ketika ada perubahan.

o Toleransi Kegagalan: Jika satu server file gagal, file masih
dapat diakses dari replika lain.

o Contoh DFS termasuk NFS (Network File System),
SMBJ/CIFS (Server Message Block/Common Internet File
System), dan Google File System (GFS) yang digunakan
secara internal oleh Google.

e Algoritma Konsensus: Dalam sistem terdistribusi, mencapai
konsensus di antara node tentang suatu nilai atau status (misalnya,
siapa pemimpin, status transaksi) adalah tantangan besar.
Algoritma seperti Paxos atau Raft digunakan untuk memastikan
bahwa semua node setuju pada urutan operasi atau nilai tertentu,
bahkan jika ada kegagalan node atau jaringan. Ini krusial untuk
menjaga konsistensi data dan keandalan sistem.

D. Contoh OS Terdistribusi (Google Fuchsia, Plan 9)
Meskipun banyak sistem modern mengadopsi prinsip
terdistribusi (misalnya, cloud OS yang mendasari layanan cloud), ada
beberapa SO yang secara eksplisit dirancang dari awal sebagai sistem
operasi terdistribusi.
e Google Fuchsia:
o Filosofi: Fuchsia adalah sistem operasi open source yang
sedang dikembangkan oleh Google. Berbeda dengan Android

65

atau Chrome OS vyang berbasis kernel Linux, Fuchsia
dibangun di atas mikrokernel baru bernama Zircon. Desain
mikrokernel ini bertujuan untuk mencapai skalabilitas yang
lebih baik, keamanan yang lebih kuat, dan kemampuan untuk
beradaptasi dengan berbagai jenis perangkat keras, dari
perangkat 10T yang sangat kecil hingga smartphone, tablet,
laptop, dan bahkan desktop.

Karakteristik Terdistribusi: Meskipun bukan DOS tradisional,
arsitektur modular Zircon dan fokusnya pada layanan
memungkinkan komponen sistem berinteraksi secara
terdistribusi. Tujuan jangka panjang Fuchsia adalah untuk
menjadi SO yang future-proof untuk dunia yang semakin
terhubung dan terdistribusi, di mana perangkat dapat bekerja
sama secara kohesif tanpa user perlu tahu di mana komputasi
terjadi. Ini mendukung konsep Ambient Computing Google.
Penggunaan Saat Ini: Masih dalam tahap pengembangan aktif,
meskipun telah diterapkan pada beberapa perangkat smart
home Google (misalnya, Google Nest Hub generasi ke-2).

e Plan 9 from Bell Labs:

O

Filosofi: Dikembangkan pada akhir 1980-an di Bell Labs (oleh
beberapa orang yang juga mengembangkan Unix), Plan 9
adalah eksperimen radikal dalam sistem operasi terdistribusi.
Filosofi intinya adalah "semuanya adalah file". Setiap sumber
daya dalam sistem (proses, jaringan, perangkat keras, bahkan
GUI) direpresentasikan sebagai file dalam sistem file hierarkis.
Pengguna mengakses dan mengelola sumber daya ini melalui
operasi file standar.

Karakteristik ~ Terdistribusi: Plan 9 secara intrinsik
terdistribusi. Pengguna dapat "me-mount” sistem file dari

66

server mana pun ke client lokal, mengakses sumber daya jarak

jauh secara transparan. Ini memungkinkan komputasi grid

yang mulus dan berbagi sumber daya yang mudah di seluruh

jaringan.

Fitur Utama:

= Protokol 9P: Protokol jaringan ringan yang digunakan
untuk semua komunikasi di Plan 9, yang didasarkan pada
konsep file ini.

= Per-User File System Namespace: Setiap pengguna
memiliki namespace sistem file unik yang dapat mereka
atur sendiri, menggabungkan sumber daya lokal dan jarak
jauh.

Penggunaan: Meskipun tidak pernah mencapai popularitas

seperti Unix atau Linux, Plan 9 telah menjadi inspirasi penting

dalam penelitian sistem operasi terdistribusi dan cloud

computing. Konsepnya tentang "semuanya adalah file" dan

per-user namespace telah mempengaruhi desain sistem

modern lainnya.

67

Google Fuchsia Plan 9 from
Bell Labs

68

BAB 6: KEAMANAN PADA SISTEM
OPERASI MODERN

Dalam lanskap komputasi yang semakin terhubung dan
kompleks, keamanan telah berevolusi dari sekadar fitur tambahan
menjadi pilar fundamental dalam desain dan operasional sistem
operasi modern. Ancaman siber yang terus berkembang, mulai dari
malware, ransomware, hingga serangan tingkat tinggi, menuntut
sistem operasi untuk tidak hanya mengelola sumber daya, tetapi juga
melindungi integritas, kerahasiaan, dan ketersediaan data serta sistem
itu sendiri. Bab ini akan menyelami berbagai model keamanan
modern yang diimplementasikan dalam SO, termasuk konsep
Mandatory Access Control (MAC) dengan studi kasus SELinux dan
AppArmor. Selanjutnya, akan dibahas mekanisme vital seperti isolasi
proses dan sandboxing, pentingnya enkripsi dan perlindungan data,
serta strategi update keamanan dan patch management yang proaktif.
Pemahaman mendalam tentang konsep-konsep ini sangat krusial bagi
siapa pun yang berinteraksi dengan teknologi informasi di era digital
ini.

A. Model Keamanan Modern (Mandatory Access

Control, SELinux, AppArmor)

Keamanan dalam sistem operasi tradisional seringkali
bergantung pada model Discretionary Access Control (DAC). Dalam
DAC, pemilik sumber daya (misalnya, file atau proses) memiliki
kebebasan untuk menentukan siapa yang dapat mengakses sumber
daya tersebut dan dengan izin apa (baca, tulis, eksekusi). Meskipun
fleksibel, DAC memiliki kelemahan serius: jika akun pengguna atau
aplikasi terkompromi, penyerang dapat mengubah izin untuk

69

mengakses dan merusak sumber daya lain. Ini membuat sistem rentan
terhadap serangan privilege escalation atau penyebaran malware.
Sebagai respons, sistem operasi modern telah mengadopsi model
keamanan yang lebih kuat, salah satunya adalah Mandatory Access
Control (MAC).

Mandatory Access Control (MAC): Filosofi Keamanan Pusat
Berbeda dengan DAC, dalam model MAC, kebijakan akses
ditentukan dan diberlakukan oleh sistem itu sendiri (kernel SO),
bukan oleh pemilik sumber daya atau pengguna. Administrator
sistem (atau kebijakan keamanan yang telah ditetapkan)
menentukan policy keamanan yang mengklasifikasikan setiap
subjek (proses, pengguna) dan objek (file, port, perangkat) dengan
label keamanan (security label). Akses hanya diberikan jika label
keamanan subjek memenuhi persyaratan label keamanan objek
sesuai dengan policy yang telah ditentukan. Kebijakan ini tidak
dapat diubah oleh pengguna atau aplikasi, bahkan jika mereka
memiliki privilege administratif.

Kelebihan MAC:

o Isolasi yang Kuat: Mencegah aplikasi atau pengguna yang
terkompromi untuk mengakses atau merusak bagian lain dari
sistem, bahkan jika mereka mendapatkan root privilege.

o Konsistensi Kebijakan: Kebijakan akses diterapkan secara
seragam di seluruh sistem, mengurangi risiko human error
atau konfigurasi yang salah.

o Pertahanan Mendalam: Menjadi lapisan pertahanan tambahan
di luar DAC, terutama efektif melawan zero-day exploits dan
malware yang mencoba menaikkan privilege.

Kekurangan MAC (dan Tantangannya):

o Kompleksitas Konfigurasi: Menerapkan dan mengelola
kebijakan MAC bisa sangat kompleks dan memerlukan
pemahaman mendalam tentang bagaimana sistem beroperasi.

/0

o Dapat Mengganggu Fungsionalitas: Konfigurasi yang terlalu
ketat dapat memblokir operasi yang sah, menyebabkan
aplikasi tidak berfungsi.

SELinux (Security-Enhanced Linux): Implementasi MAC yang

Robust SELinux adalah mekanisme keamanan Mandatory Access

Control yang diimplementasikan sebagai modul kernel Linux. Ini

dikembangkan oleh National Security Agency (NSA) Amerika

Serikat dan dirilis sebagai open source. SELinux bekerja dengan

menambahkan atribut keamanan (security context) ke setiap objek

dalam sistem (file, proses, socket, dll.) dan setiap subjek (proses).

Kernel SELinux kemudian memeriksa security context ini

terhadap policy yang dimuat untuk menentukan apakah suatu

operasi diizinkan atau tidak.

Cara Kerja SELinux:
1. Setiap objek (misalnya, /var/www/html/index.php) memiliki
security context (misalnya,

system_u:object_r:httpd_sys_content_t:s0).

2. Setiap proses (misalnya, proses httpd) memiliki security
context (misalnya, system_u:system_r:httpd_t:s0).

3. Ketika proses httpd mencoba mengakses index.php, kernel
SELinux berkonsultasi dengan policy matrix untuk melihat
apakah proses dengan context httpd_t diizinkan untuk
membaca file dengan context httpd_sys_content_t.

4. Jika tidak diizinkan, akses akan ditolak, bahkan jika izin DAC
(misalnya, permission Unix) mengizinkannya.

SELinux dapat beroperasi dalam mode enforcing (menegakkan

kebijakan dan memblokir akses) atau permissive (mencatat

pelanggaran tanpa memblokir akses, berguna untuk
troubleshooting). Distribusi Linux seperti Red Hat Enterprise

/71

Linux (RHEL), Fedora, dan CentOS menggunakan SELinux

secara default.

AppArmor: Alternatif MAC yang Lebih Sederhana AppArmor

(Application Armor) adalah mekanisme Mandatory Access

Control lain yang tersedia di Linux, dikembangkan oleh Novell.

Berbeda dengan SELinux yang berorientasi pada label keamanan

yang sangat granular, AppArmor lebih berorientasi pada jalur

(path) dan berbasis profil. Administrator membuat profil

keamanan untuk aplikasi tertentu yang menentukan sumber daya

(file, jaringan, kapabilitas kernel) apa yang boleh dan tidak boleh

diakses oleh aplikasi tersebut.

Cara Kerja AppArmor:

1. Administrator mendefinisikan "profil” untuk suatu aplikasi
(misalnya, web server Apache).

2. Profil ini berisi daftar eksplisit tentang file apa yang boleh
dibaca atau ditulis, port jaringan apa yang boleh dibuka, dan
kemampuan sistem apa yang boleh digunakan oleh aplikasi
tersebut.

3. Kernel AppArmor akan memblokir setiap upaya akses yang
dilakukan oleh aplikasi yang melanggar profilnya.

AppArmor sering dianggap lebih mudah untuk dikonfigurasi dan

dikelola dibandingkan SELinux, karena sifatnya yang lebih

ringkas dan berbasis path. Distribusi Linux seperti Ubuntu,
openSUSE, dan Debian menggunakan AppArmor secara default.

72

DAC
(Discretionary Access Control)

Q‘ User B
Owner
e B)

Sa
%
v Owner Sets
Access If Allowed Permissions

by Ormissions
MAC
(Mandatory Access Control)
& Operating System &
User A (Security Labex) | (KeMel/MAC Enforcement) | secyrity Label ¥)
System Policy
File File 2
(Security Label P) (Security Label P)

1. Diagram DAC: Tunjukkan "Pengguna A" dan "Pengguna B".
Pengguna A memiliki "File X". Pengguna A memiliki panah ke
File X dengan label "Pemilik Mengatur lzin". Pengguna B
memiliki panah putus-putus ke File X dengan label "Akses Jika
Diizinkan Pemilik". Tekankan bahwa Pengguna A bisa mengubah
izin sesuka hati.

2. Diagram MAC: Tunjukkan "Pengguna A (Label Keamanan X)"
dan "Pengguna B (Label Keamanan Y)". Tunjukkan "File Z
(Label Keamanan P)". Sebuah kotak besar "Sistem Operasi
(Kernel/MAC Enforcement)" berada di antara Pengguna dan File.
Panah dari Pengguna ke Sistem Operasi, dan dari Sistem Operasi
ke File. Di tengah Sistem Operasi, tulis "Kebijakan Sistem".
Tekankan bahwa Sistem Operasi yang menentukan apakah
Pengguna dapat mengakses File berdasarkan Label Keamanan dan
Kebijakan, bukan pemilik File.)*

/73

B. Isolasi Proses dan Sandbox

Salah satu prinsip keamanan fundamental dalam sistem operasi

modern adalah isolasi. Tujuannya adalah untuk membatasi dampak
dari bug atau malware pada satu aplikasi atau proses agar tidak
menyebar dan merusak seluruh sistem. Dua mekanisme utama untuk
mencapai isolasi ini adalah isolasi proses dan sandboxing.

Isolasi Proses: Setiap proses (misalnya, sebuah aplikasi yang
sedang Dberjalan) dalam sistem operasi modern dialokasikan
dengan ruang memori virtualnya sendiri yang terpisah dari proses
lain. Ini berarti satu proses tidak dapat secara langsung membaca
atau menulis ke ruang memori proses lain, kecuali melalui
mekanisme komunikasi antarproses (IPC) yang dikontrol.

Manfaat Isolasi Proses:

o Stabilitas Sistem: Jika satu aplikasi mengalami crash karena
bug atau kehabisan memori, itu tidak akan merusak proses lain
atau kernel sistem operasi. Hanya aplikasi tersebut yang
berhenti berfungsi.

o Keamanan: Mencegah satu aplikasi berbahaya untuk memata-
matai atau memanipulasi data dari aplikasi lain. Ini adalah
fondasi dari multi-tasking yang aman.

o Manajemen Sumber Daya: Memungkinkan SO untuk melacak
dan mengelola sumber daya (CPU, memori) yang digunakan
oleh setiap proses secara individu.

Mekanisme inti di balik isolasi proses adalah manajemen memori

virtual (MMU - Memory Management Unit) pada prosesor, yang

menerjemahkan alamat memori virtual yang dilihat oleh proses
menjadi alamat memori fisik yang sebenarnya, dan
memberlakukan batasan akses.

Sandbox (Lingkungan Terpasir): Sandbox adalah mekanisme

keamanan yang lebih ketat dari isolasi proses, menciptakan

74

lingkungan eksekusi yang sangat terisolasi untuk program.

Lingkungan ini memiliki batasan yang ketat mengenai sumber

daya apa yang dapat diakses oleh program, termasuk file, network

connection, dan hardware tertentu. Aplikasi di dalam sandbox
hanya dapat berinteraksi dengan sumber daya di luar sandbox
melalui API yang sangat terkontrol dan dengan izin eksplisit.

Cara Kerja Sandbox: Sebuah sandbox bekerja dengan

menempatkan program di dalam "kurungan" virtual yang

membatasi aksesnya ke sumber daya di luar batas yang diizinkan.

Ini sering dilakukan melalui:

o Virtualisasi Level Aplikasi: Menggunakan teknologi seperti
kontainer (containers) atau mesin virtual ringan.

o Mekanisme Kernel: SO membatasi panggilan sistem (system
calls) yang dapat dilakukan oleh proses di dalam sandbox.

o Kebijakan Keamanan: Aturan yang telah ditetapkan mengenai
file mana yang boleh diakses, port jaringan mana yang boleh
digunakan, atau perangkat hardware mana yang dapat diakses.

Penerapan Sandbox dalam SO Modern:

o Browser Web: Setiap tab atau extension di browser modern
(Chrome, Firefox, Edge) sering berjalan di sandbox terpisah.
Jika ada situs web berbahaya yang mencoba mengeksploitasi
browser, kerusakannya terbatas pada sandbox tab tersebut,
tidak dapat merusak seluruh sistem operasi.

o Aplikasi Mobile: Baik Android maupun i0S sangat
mengandalkan sandboxing untuk setiap aplikasi. Aplikasi
tidak dapat mengakses file atau data aplikasi lain tanpa izin
eksplisit yang diberikan oleh pengguna. Misalnya, aplikasi
game tidak bisa membaca kontak Anda tanpa persetujuan
Anda.

o Aplikasi Desktop: Beberapa aplikasi desktop modern
(misalnya, aplikasi yang diinstal dari Windows Store, atau

75

aplikasi di macOS App Store) juga di-sandbox untuk
meningkatkan keamanan.

o Eksekusi Kode yang Tidak Dipercaya: Sandbox digunakan
untuk menjalankan kode yang tidak dipercaya (misalnya,
plugin pihak ketiga, skrip) di lingkungan yang aman,
mencegahnya melakukan tindakan berbahaya

Manfaat Sandbox:

e Perlindungan Terhadap Ancaman: Membatasi dampak
malware, exploit, atau kode berbahaya lainnya.

e Pengurangan Permukaan Serangan: Mengurangi area sistem
yang dapat diakses oleh kode yang tidak dipercaya.

Perlindungan Privasi: Mencegah aplikasi mengakses data pribadi

tanpa izin pengguna.

Process Isolation () —

Browser Woee

D m
) = ‘
Word Processor processor |/ | Requires Game
L;é;\ permission)
' \ Requires

permission

Sandbox /o
Game < Internet
\ \ / 7 ot =] Requires
‘ sa‘\(\b . @ permlssmn
Q

Sandbox Camera
Requires
|
‘ \@ permission

___Bigisar

Operating System

76

C. Enkripsi dan Perlindungan Data

operasi

Perlindungan data adalah aspek krusial keamanan sistem
modern. Ini melibatkan penggunaan kriptografi untuk

menjaga kerahasiaan dan integritas data, baik saat data tersebut
disimpan (data at rest) maupun saat sedang ditransfer (data in transit).
Enkripsi Data At Rest (Penyimpanan): Enkripsi data at rest adalah
praktik mengkodekan data yang disimpan di perangkat
penyimpanan (hard drive, SSD, flash drive) sehingga tidak dapat
dibaca oleh pihak yang tidak sah. Bahkan jika perangkat dicuri
atau diakses secara fisik, data tidak dapat diakses tanpa kunci
dekripsi yang benar.

Enkripsi Disk Penuh (Full-Disk Encryption / FDE): Ini adalah
metode paling umum, di mana seluruh drive atau partisi
dienkripsi. SO mengelola proses enkripsi/dekripsi secara
transparan bagi pengguna setelah otentikasi awal (misalnya,
memasukkan password boot).

Contoh:

@)

BitLocker (Windows): Fitur FDE bawaan pada edisi
Windows Pro dan Enterprise.

FileVault (macOS): Fitur FDE bawaan untuk perangkat
Apple.

LUKS (Linux Unified Key Setup) / dm-crypt (Linux):
Standar untuk enkripsi disk di sebagian besar distribusi
Linux.

Android/iOS Default Encryption: Sebagian besar
perangkat mobile modern mengenkripsi seluruh
penyimpanan secara default dan terikat pada otentikasi
fingerprint atau passcode pengguna.

77

o

Enkripsi File/Folder: Mengenkripsi file atau folder tertentu,
bukan seluruh drive. Ini berguna untuk melindungi data
sensitif di lingkungan multi-user atau share. Contoh:
Encrypting File System (EFS) di Windows.

Enkripsi Data In Transit (Transfer Data): Enkripsi data in transit
melindungi data saat ditransfer melalui jaringan (misalnya,
internet, jaringan lokal). Tujuannya adalah untuk mencegah
eavesdropping (menguping) atau man-in-the-middle attacks.

o

TLS/SSL (Transport Layer Security/Secure Sockets Layer):
Protokol kriptografi yang digunakan untuk mengamankan
komunikasi melalui jaringan komputer. Digunakan secara luas
untuk web Browse (HTTPS), email (SMTPS, IMAPS), dan
VPN. OS modern menyediakan stack jaringan yang
mendukung TLS/SSL secara native.

VPN (Virtual Private Network): Membuat “terowongan™
terenkripsi melalui jaringan publik, memungkinkan pengguna
untuk mengirim dan menerima data secara aman seolah-olah
perangkat mereka terhubung langsung ke jaringan privat. OS
menyediakan klien VPN bawaan atau mendukung software
VPN pihak ketiga.

SSH (Secure Shell): Protokol untuk akses jarak jauh yang
aman ke server dan untuk transfer file yang aman. SO modern
mendukung klien dan server SSH.

Perlindungan Integritas Data: Selain kerahasiaan (enkripsi),
perlindungan data juga mencakup integritas, yaitu memastikan
data tidak dimodifikasi secara tidak sah. Ini sering dicapai
melalui:

o

Hashing dan Digital Signatures: Menggunakan fungsi hash
kriptografi untuk menghasilkan nilai unik dari data, yang

/8

kemudian dapat diverifikasi menggunakan tanda tangan digital
untuk memastikan data tidak berubah. Digunakan dalam
pembaruan perangkat lunak, verifikasi file, dan boot aman.

o Journaling File Systems: Sistem file modern (misalnya, NTFS,
ext4, APFS) menggunakan journaling untuk mencatat
perubahan yang tertunda ke disk. Ini membantu memulihkan
sistem file ke keadaan konsisten setelah kegagalan daya atau
crash sistem, mencegah korupsi data.

D. Update Keamanan dan Patch Management

Salah satu lini pertahanan paling efektif dalam keamanan sistem
operasi modern adalah sistem update dan patch management yang
proaktif. Kerentanan (vulnerability) keamanan baru ditemukan secara
terus-menerus, dan malware serta penyerang dengan cepat
mengeksploitasi celah ini. Oleh karena itu, kemampuan sistem operasi
untuk secara rutin menerima dan menerapkan pembaruan sangat

penting.
« Pentingnya Pembaruan Keamanan:
o Menambal Kerentanan (Patching Vulnerabilities):

Pengembang SO secara aktif mencari dan memperbaiki bug
atau celah keamanan (exploit) yang dapat dimanfaatkan oleh
penyerang. Pembaruan ini, sering disebut patch, dirilis untuk
menutup celah tersebut.

o Melawan Ancaman Baru: Pembaruan juga dapat mencakup
peningkatan mekanisme keamanan untuk menghadapi jenis
serangan baru atau malware yang berkembang.

o Kepatuhan: Banyak standar keamanan dan regulasi (misalnya,
ISO 27001, HIPAA, GDPR) mensyaratkan patch management
yang efektif sebagai bagian dari upaya kepatuhan.

79

e Mekanisme Pembaruan Otomatis OS: Sistem operasi modern
telah mengotomatiskan proses update sebisa mungkin untuk
memastikan pengguna dan administrator tetap terlindungi.

(¢]

Windows Update: Windows secara teratur merilis patch
keamanan dan pembaruan fitur. Windows 10 dan 11 secara
default mengaktifkan pembaruan otomatis, seringkali dengan
kemampuan untuk mengunduh di latar belakang dan
menginstal di luar jam kerja.
Software Update (macOS): Apple juga menyediakan
pembaruan sistem secara rutin yang mencakup patch
keamanan dan peningkatan fitur, dengan opsi untuk instalasi
otomatis.
Package Managers (Linux): Distribusi Linux menggunakan
package manager (misalnya, apt di Debian/Ubuntu, dnf di
Fedora/RHEL) untuk mengelola perangkat lunak dan
pembaruan sistem. Administrator atau pengguna dapat
menjalankan perintah untuk mengunduh dan menginstal patch
keamanan. Banyak sistem Linux server dikonfigurasi untuk
pembaruan keamanan otomatis.
Pembaruan OTA (Over-The-Air) pada Mobile OS: Android
dan iOS secara rutin mengirimkan pembaruan OTA ke
perangkat mobile. Pembaruan ini mencakup patch keamanan,
perbaikan bug, dan fitur baru.
= Tantangan Fragmentasi (Android): Meskipun Google
merilis patch bulanan, penyebaran patch ke perangkat
pengguna akhir seringkali terhambat oleh produsen
perangkat dan operator, yang perlu menyesuaikan dan
menguji pembaruan sebelum mendistribusikannya. Ini
menciptakan "kesenjangan patch".

80

= Keunggulan Kontrol (i0S): Apple memiliki kontrol
vertikal, sehingga patch keamanan iOS dapat menjangkau
sebagian besar perangkat yang didukung dengan sangat
cepat dan seragam.

Patch Management: Patch management adalah proses sistematis
untuk mengidentifikasi, memperoleh, menguji, dan menyebarkan
patch perangkat lunak. Dalam lingkungan enterprise, ini
melibatkan strategi yang lebih kompleks untuk memastikan
pembaruan tidak mengganggu aplikasi kritis dan dikelola secara
terpusat.

o Pengujian: Sebelum patch diterapkan di lingkungan produksi,
mereka sering diuji di lingkungan staging untuk memastikan
tidak ada konflik atau regresi yang muncul.

o Rollback Options: SO modern sering menyediakan
kemampuan untuk rollback ke versi sebelumnya jika
pembaruan menyebabkan masalah serius.

o Vulnerability Disclosure dan CVE: Kerentanan keamanan
seringkali dicatat dalam Common Vulnerabilities and
Exposures (CVE) database, memberikan standar untuk
mengidentifikasi dan melacak kerentanan yang telah ditambal.

81

Security Researcher

/0S Vendor Identify
Vulnerabilities &

Create Patch
=

User Computers/Devices

Automatic/
g -> Installation Q

N
| &
@ Automatic/Manual
Update Installation

0S Update Server

% @ Automatic/Manual
— Update Installation

4.

More Secure
System

Bug Reports /

Feedback

Kotak "Peneliti Keamanan / Vendor SO": Dengan ikon kaca
pembesar (mencari kerentanan) dan ikon perisai (mengembangkan
patch). Panah keluar "Identifikasi Kerentanan & Buat Patch".
Panah ini mengarah ke Kotak "Server Pembaruan OS" (ikon
server dengan panah download). Panah keluar "Distribusi
Update".

Panah ini mengarah ke beberapa "Komputer/Perangkat Pengguna”
(ikon Laptop, Smartphone). Di setiap perangkat, tunjukkan ikon
"Instalasi Otomatis/Manual Update".

Hasil akhirnya adalah "Sistem yang Lebih Aman” (ikon gembok
terkunci atau perisai hijau). Bisa tambahkan panah melingkar dari
"Perangkat Pengguna™ kembali ke "Peneliti/Vendor SO™" dengan
label "Laporan Bug / Feedback™.)*

82

BAB 7: KONTROL VERSI, PEMBARUAN,
DAN AUTOMASI

Pengembangan dan pemeliharaan sistem operasi modern adalah
sebuah proses yang kompleks dan dinamis. Dengan jutaan baris kode
dan komponen yang saling terkait, diperlukan metodologi yang
canggih untuk mengelola perubahan, memastikan kualitas, dan
mendistribusikan pembaruan secara efisien. Bab ini akan membahas
tiga pilar penting dalam siklus hidup sistem operasi modern:
Continuous Integration dan Continuous Deployment (C1/CD) sebagai
praktik pengembangan perangkat lunak yang revolusioner; bagaimana
sistem operasi mengelola pembaruan otomatis untuk menjaga
keamanan dan fungsionalitas; serta pentingnya manajemen versi
kernel dan komponen OS untuk stabilitas dan evolusi sistem.
Pemahaman tentang otomatisasi dan praktik rekayasa perangkat lunak
ini akan memberikan wawasan tentang bagaimana SO tetap relevan
dan aman di tengah perkembangan teknologi yang cepat.

A. Continuous Integration dan Continuous Deployment

(CI/CD)

Continuous Integration (CI) dan Continuous Deployment (CD)
adalah praktik rekayasa perangkat lunak yang telah merevolusi cara
pengembangan dan pengiriman software, termasuk sistem operasi dan
komponennya. Tujuan utama CI/CD adalah untuk mempercepat
siklus release, meningkatkan kualitas kode, dan mengurangi risiko
kesalahan melalui otomatisasi yang ekstensif.

e Continuous Integration (Cl): Integrasi Kode yang Berkelanjutan
Cl adalah praktik di mana pengembang secara teratur

83

mengintegrasikan perubahan kode mereka ke dalam repositori
pusat (mainline atau main branch) berkali-kali dalam sehari.
Setiap kali kode baru diintegrasikan, proses otomatis akan:

o

Kompilasi Otomatis: Kode sumber dikompilasi untuk
memastikan tidak ada kesalahan sintaksis atau dependensi
yang hilang.

Pengujian Otomatis: Berbagai jenis tes (misalnya, unit tests,
integration tests, static code analysis) dijalankan secara
otomatis untuk mendeteksi bug atau regresi sejak dini. Jika
ada tes yang gagal, pengembang akan segera diberitahu.
Feedback Cepat: Pengembang mendapatkan feedback instan
mengenai kualitas dan fungsionalitas kode mereka. Ini
memungkinkan masalah diidentifikasi dan diperbaiki saat
masih kecil, jauh sebelum menjadi bug besar yang sulit
dilacak.

Manfaat CI bagi Pengembangan OS:

o

Deteksi Bug Dini: Mencegah integrasi kode yang rusak ke
dalam mainline.

Kualitas Kode yang Konsisten: Memastikan bahwa semua
kontribusi memenuhi standar kualitas.

Kolaborasi Efisien: Memungkinkan banyak pengembang
untuk bekerja pada basis kode yang sama tanpa saling
mengganggu.

Pengurangan “Integration Hell": Menghindari masalah besar
yang muncul ketika perubahan kode diintegrasikan sekaligus
setelah periode pengembangan yang panjang.

Continuous Deployment (CD): Pengiriman Otomatis ke Produksi
CD adalah langkah selanjutnya setelah CI. Ini adalah praktik di
mana setiap perubahan kode yang berhasil melewati semua tahap
pengujian otomatis di Cl akan secara otomatis dikirim (deployed)

84

ke lingkungan produksi atau staging. Tujuannya adalah untuk

memastikan bahwa perangkat lunak selalu dalam kondisi yang

dapat di-deploy setiap saat.

Continuous Delivery vs. Continuous Deployment: Perlu dicatat

perbedaan antara Continuous Delivery dan Continuous

Deployment.

o Continuous Delivery: Mengotomatiskan semua langkah
hingga tahap deployment ke produksi, tetapi membutuhkan
persetujuan manual untuk actual release ke pengguna akhir.

o Continuous Deployment: Mengotomatiskan seluruh proses
dari komit kode hingga deployment ke produksi tanpa
intervensi manual, asalkan semua tes otomatis berhasil.

Manfaat CD bagi Sistem Operasi:

o Siklus Rilis Cepat: Pembaruan dan patch keamanan dapat
didistribusikan dengan sangat cepat setelah dikembangkan.

o Respon Cepat terhadap Ancaman: Kerentanan keamanan
dapat ditambal dan didistribusikan ke pengguna dalam
hitungan jam atau hari, bukan minggu atau bulan.

o Inovasi Berkelanjutan: Fitur baru dapat di-roll out secara
bertahap dan cepat, memungkinkan developer untuk
bereksperimen dan mendapatkan feedback lebih cepat.

o Mengurangi Human Error: Otomatisasi menghilangkan
banyak human error yang bisa terjadi dalam proses
deployment manual.

Meskipun Continuous Deployment penuh pada OS
consumer (seperti Windows atau macOS) mungkin jarang
dilakukan karena risikonya, prinsip-prinsip CD sangat diterapkan
pada komponen-komponen tertentu atau pada SO di lingkungan
cloud dan server yang highly-controlled. Contohnya, Google

85

sering menggunakan CD untuk layanan internal mereka dan
beberapa server-side components Android.

Continuous Integration

Ci/CD
)
/> o
@ — [)
Commlt Code ‘\\/ Eard fail 50
/ Git
Develop Commit/ Deploy (CD)

Ver5|on Control Compluatios l

l Trigger Build

m-i
—
-"@ Run Tests v= Run Tskage _;;—2)
-"‘ —— ¥ -

Test

Build Test (CI)
‘ Package l
Test Application
7 =l ==
e
] If the tests Deploy to —
i <P fail =
Develop Release/Staging PDrggll?gtit:n
Repeat this cycle

. Develop: (Ikon pengembang mengetik kode). Panah "Commit
Code".

. Commit / Version Control: (lkon Git/repositori kode). Panah

"Trigger Build".

Build: (Ikon server dengan roda gigi/ikon kompilasi). Panah "Run

Tests".

. Test (CI): (lkon server dengan tanda centang/X, atau ikon

mikroskop). Panah "Package Application™.

Release/Package: (Ikon kotak hadiah/paket). Panah "Deploy to

Staging".

Deploy (CD): (lkon server yang me-deploy ke cloud atau mesin).

Panah "Deploy to Production”.

86

7. Ulangi siklus ini. Tambahkan panah feedback dari "Test" kembali
ke "Develop" jika gagal.)*

B. Sistem Pembaruan Otomatis OS

Pembaruan perangkat lunak, terutama untuk sistem operasi,
sangat penting untuk menjaga keamanan, stabilitas, dan
fungsionalitas. Sistem operasi modern telah mengembangkan
mekanisme pembaruan otomatis yang canggih untuk
menyederhanakan proses ini bagi pengguna akhir dan memastikan
sistem tetap terlindungi dari ancaman baru.
e Pentingnya Pembaruan Otomatis:

o Keamanan Kritis: Kerentanan keamanan baru ditemukan
setiap hari. Pembaruan otomatis memastikan bahwa patch
keamanan kritikal dapat diterapkan dengan cepat tanpa
intervensi pengguna, menutup celah eksploitasi.

o Perbaikan Bug: Mengatasi bug dan masalah kinerja yang
ditemukan setelah release awal.

o Fitur Baru dan Peningkatan Performa: Memperkenalkan
fungsionalitas baru, kompatibilitas hardware yang lebih baik,
dan optimasi kinerja.

o Kepatuhan: Banyak lingkungan enterprise dan regulasi
memerlukan sistem untuk selalu diperbarui.

e Mekanisme Pembaruan pada Berbagai OS Modern:

o Windows Update: Ini adalah layanan bawaan Microsoft untuk
mendistribusikan pembaruan ke sistem Windows. Sejak
Windows 10, pembaruan otomatis diaktifkan secara default
dan sangat sulit untuk dimatikan sepenuhnya pada edisi
consumer. Pembaruan dibagi menjadi:

87

@)

= Quality Updates (Cumulative Updates): Pembaruan
bulanan yang mencakup patch keamanan, perbaikan bug,
dan peningkatan keandalan.
= Feature Updates: Pembaruan besar yang dirilis satu atau
dua Kkali setahun, membawa fitur baru, perubahan
antarmuka, dan peningkatan signifikan. Windows Update
seringkali mengunduh pembaruan di latar belakang dan
memerlukan restart perangkat. Fitur seperti "Jam Aktif"
(Active Hours) memungkinkan pengguna menentukan
kapan restart tidak boleh terjadi.
Software Update (macOS): Apple mengelola pembaruan
macOS secara terpusat melalui fitur "Software Update" di
System Settings. Pembaruan ini mencakup perbaikan
keamanan dan fitur baru. macOS memiliki reputasi baik dalam
hal distribusi pembaruan yang cepat dan konsisten ke
perangkat yang didukung.
Package Managers (Linux): Sebagian besar distribusi Linux
mengelola pembaruan melalui sistem package manager
(misalnya, APT di Debian/Ubuntu, DNF di Fedora/RHEL,
Pacman di Arch Linux). Meskipun sering memerlukan
perintah manual (e.g., sudo apt update && sudo apt upgrade),
banyak lingkungan desktop Linux menyediakan alat GUI
untuk pembaruan yang mudah. Untuk server, alat seperti
unattended-upgrades (Ubuntu) dapat mengotomatiskan patch
keamanan.
Over-The-Air (OTA) Updates (Android & i0OS): Sistem
operasi mobile sangat mengandalkan pembaruan OTA.
= i0S: Apple memiliki kendali penuh atas hardware dan
software, memungkinkan pembaruan iOS didistribusikan

88

secara seragam dan cepat ke hampir semua perangkat yang
didukung. Pengguna menerima notifikasi dan dapat
mengunduh serta menginstal pembaruan langsung dari
perangkat.

= Android: Meskipun Google merilis pembaruan bulanan
untuk kernel Android, distribusi ke perangkat pengguna
akhir seringkali terhambat oleh produsen perangkat dan
operator seluler. Mereka perlu menyesuaikan dan menguji
pembaruan untuk perangkat keras spesifik mereka.
Inisiatif seperti Project Treble oleh Google bertujuan
untuk mengurangi fragmentasi dan mempercepat proses
pembaruan.

e Tantangan Pembaruan Otomatis:

O

Kompatibilitas: Pembaruan terkadang dapat menyebabkan
masalah kompatibilitas dengan aplikasi atau driver lama.
Ukuran dan Bandwidth: Pembaruan yang besar dapat
memakan banyak bandwidth dan ruang penyimpanan.
Downtime: Beberapa pembaruan memerlukan restart,
menyebabkan downtime singkat.

Kegagalan Pembaruan: Proses pembaruan yang gagal dapat
menyebabkan sistem tidak dapat di-boot. SO modern sering
memiliki mekanisme rollback untuk mengatasi hal ini.

C. Manajemen Versi Kernel dan Komponen OS

Manajemen versi adalah praktik fundamental dalam

pengembangan perangkat lunak untuk melacak dan mengontrol
perubahan pada kode. Dalam konteks sistem operasi, manajemen
versi kernel dan komponen OS lainnya sangat krusial untuk stabilitas,
keamanan, dan kemampuan debugging.

89

Pentingnya Manajemen Versi:

o

Pelacakan Perubahan: Mencatat setiap perubahan yang dibuat
pada kode sumber, memungkinkan pengembang untuk melihat
riwayat perubahan, siapa yang membuat perubahan, dan
mengapa.

Kolaborasi: Memfasilitasi kerja tim di mana banyak
pengembang dapat bekerja pada bagian kode yang sama
secara bersamaan tanpa saling menimpa pekerjaan.
Kemampuan Rollback: Jika ada bug kritis atau masalah
performa yang diperkenalkan oleh perubahan baru, sistem
dapat dengan cepat dikembalikan (rollback) ke versi
sebelumnya yang stabil.

Debugging dan Analisis: Memungkinkan pengembang untuk
mengidentifikasi dengan tepat perubahan mana yang
menyebabkan bug atau masalah tertentu, mempercepat proses
debugging.

Reproduksibilitas: Memungkinkan pembangunan kembali
versi OS atau komponen tertentu di masa lalu, yang penting
untuk pengujian dan kepatuhan.

Sistem Kontrol Versi (Version Control Systems - VCS):
Pengembang sistem operasi mengandalkan Sistem Kontrol Versi
(VCS) untuk mengelola kode sumber mereka. Alat VCS paling
populer saat ini adalah Git.

o

Git: Digunakan secara ekstensif dalam pengembangan kernel
Linux, Android Open Source Project (AOSP), dan banyak
proyek open source lainnya. Git adalah VCS terdistribusi,
artinya setiap pengembang memiliki salinan lengkap dari
repositori kode, memungkinkan mereka bekerja secara offline
dan menyatukan perubahan mereka nanti. Ini memungkinkan

90

model pengembangan yang sangat kolaboratif dan
terdistribusi.
o Fitur Git yang Relevan:
= Commits: Merekam perubahan pada kode.
= Branches: Memungkinkan pengembang untuk bekerja
pada fitur baru secara terpisah dari mainline tanpa
mengganggu kode yang stabil.
= Merges: Menggabungkan perubahan dari satu branch ke
branch lain.
= Tags: Menandai rilis stabil atau versi penting dari kode.
Manajemen Versi Kernel: Kernel sistem operasi (misalnya, kernel
Linux) memiliki siklus rilis yang teratur dengan skema
penomoran versi yang jelas (misalnya, 5.15.0). Setiap versi mayor
membawa fitur baru yang signifikan, sementara versi minor
biasanya berfokus pada perbaikan bug dan patch keamanan.
Distribusi Linux, misalnya, memilih versi kernel tertentu dan
mengelolanya, memberikan stabilitas dan patch keamanan di atas
versi tersebut.
Manajemen Versi Komponen OS: Selain kernel, sistem operasi
terdiri dari ribuan komponen lain (pustaka sistem, utilitas, device
driver, shell, aplikasi bawaan). Semua komponen ini juga
memiliki versi tersendiri yang harus dikelola dan disinkronkan
untuk memastikan kompatibilitas dan stabilitas sistem secara
keseluruhan. Dalam ekosistem open source, seringkali ada proses
yang terstruktur untuk mengelola kontribusi dari berbagai pihak
dan memastikan mereka terintegrasi dengan baik ke dalam release
OS.
Dampak pada Stabilitas dan Keamanan: Manajemen versi yang
buruk dapat menyebabkan masalah serius, seperti bug yang sulit

91

dilacak, ketidakstabilan sistem, atau bahkan celah keamanan yang
tidak sengaja diperkenalkan. Oleh karena itu, praktik terbaik
dalam manajemen versi, yang difasilitasi oleh alat seperti Git dan
metodologi CI/CD, adalah fondasi untuk membangun dan
memelihara sistem operasi yang robust dan aman.

Distriboration Distributut Version Control system

Clo‘ne_ ;{ O

_ Clone
J i
Central Repository
¥ ‘ \Y
Developer 1 Developer N
Commit N Commit
frum & Push
Local Repository O/GitLab Local Repository
N Push / _ /&
il “~_Pull/Fetch v 4
v_ } F
\ Q Pull/Fetch Q 3
Local Repository Local Repository
Developer 2 Developer N

(Deskripsi Gambar: Sebuah diagram yang menunjukkan "Repositori
Pusat (Central Repository)" (misalnya GitHub/GitLab ikon). Dari
Repositori Pusat, tunjukkan beberapa "Pengembang™ (Developer 1,
Developer 2, Developer N) yang masing-masing memiliki "Repositori
Lokal" mereka sendiri. Tunjukkan panah "Clone™ dari Repositori
Pusat ke Repositori Lokal, panah "Commit" dari Pengembang ke
Repositori Lokal, dan panah "Push" dari Repositori Lokal ke
Repositori Pusat. Juga, tunjukkan panah "Pull/Fetch" dari Repositori
Pusat ke Repositori Lokal. Ini menggambarkan bagaimana
pengembang berkolaborasi dan mengelola versi kode.)

92

BAB 8: MASA DEPAN SISTEM OPERASI

Sistem operasi telah melalui evolusi yang luar biasa, dari
sekadar manajer sumber daya menjadi arsitek komputasi yang
kompleks dan adaptif. Namun, perjalanan inovasi tidak berhenti di
sini. Seiring dengan kemajuan pesat dalam kecerdasan buatan (Al),
pembelajaran mesin (ML), proliferasi perangkat Internet of Things
(1oT), dan kebutuhan akan pemrosesan data di edge, sistem operasi
terus beradaptasi dan berinovasi untuk memenuhi tuntutan era
komputasi berikutnya. Bab ini akan mengeksplorasi tren-tren kunci
yang akan membentuk masa depan sistem operasi, membahas
integrasi yang semakin mendalam dengan Al/ML, peran krusial SO
dalam ekosistem loT dan edge computing, pentingnya model
pengembangan open source, serta tantangan dan peluang yang
menanti di cakrawala pengembangan SO.

A. Integrasi dengan Al dan Machine Learning

Kecerdasan Buatan (Al) dan Pembelajaran Mesin (ML) telah
menjadi kekuatan pendorong di berbagai bidang teknologi, dan sistem
operasi tidak terkecuali. Integrasi AI/ML ke dalam SO bukan hanya
tentang menjalankan aplikasi Al, tetapi juga tentang bagaimana

Al/ML dapat meningkatkan fungsionalitas inti dari SO itu sendiri,

menjadikannya lebih cerdas, adaptif, dan efisien.

e Optimalisasi Sumber Daya Adaptif: SO modern harus mengelola
sumber daya (CPU, memori, 1/0O, daya) secara efisien untuk
ribuan proses dan aplikasi yang berjalan secara bersamaan.
Al/ML dapat digunakan untuk:

Q3

o

Penjadwalan yang Cerdas: Model ML dapat mempelajari pola
penggunaan aplikasi dan perilaku pengguna untuk
memprediksi kebutuhan sumber daya di masa depan.
Misalnya, penjadwal CPU dapat memprioritaskan tugas-tugas
yang paling sering digunakan pengguna atau mengalokasikan
sumber daya ke aplikasi yang akan segera aktif, mengurangi
latensi dan meningkatkan responsivitas.

Manajemen Daya Prediktif: Al dapat menganalisis data
penggunaan baterai dan aktivitas perangkat untuk
memprediksi kapan pengguna akan membutuhkan daya dan
secara adaptif menyesuaikan mode daya, mengoptimalkan
konsumsi energi tanpa mengorbankan pengalaman pengguna.

Alokasi Memori Dinamis: ML dapat memprediksi pola akses
memori dan mengoptimalkan penempatan data dalam cache
atau memori utama untuk mengurangi swapping dan
meningkatkan performa.

Peningkatan Keamanan dan Deteksi Anomali: AlI/ML menjadi
alat yang sangat ampuh dalam pertahanan siber pada tingkat
sistem operasi:

O

Deteksi Malware Berbasis Perilaku: Daripada hanya
mengandalkan tanda tangan malware yang sudah diketahui,
model ML dapat memantau perilaku proses, panggilan sistem
(system calls), dan aktivitas jaringan untuk mengidentifikasi
pola-pola yang mencurigakan atau anomali yang mungkin
menunjukkan adanya malware baru atau zero-day exploit.

Otentikasi Adaptif: SO dapat menggunakan ML untuk
menganalisis pola login pengguna (lokasi, waktu, perangkat)
dan menyesuaikan tingkat keamanan otentikasi (misalnya,

Q4

meminta otentikasi multifaktor jika terdeteksi aktivitas yang
tidak biasa).

o Manajemen Kerentanan Otomatis: Al dapat membantu
mengidentifikasi dan memprioritaskan kerentanan dalam
sistem, serta merekomendasikan patch atau konfigurasi
keamanan yang optimal.

Antarmuka Pengguna yang Lebih Personal dan Intuitif: Integrasi

Al juga akan membuat interaksi dengan sistem operasi menjadi

lebih alami dan personal:

o Asisten Virtual Cerdas: Asisten suara seperti Google
Assistant, Siri, dan Cortana akan semakin terintegrasi dengan
kernel SO, memahami konteks, dan proaktif dalam membantu
pengguna. Mereka dapat mengelola tugas-tugas sistem
(misalnya, membersihkan disk, mengelola notifikasi)
berdasarkan preferensi pengguna.

o Personalisasi Adaptif: SO dapat mempelajari preferensi
pengguna (misalnya, aplikasi yang sering digunakan, waktu
penggunaan) dan secara otomatis menyesuaikan layout Ul,
rekomendasi aplikasi, atau pengaturan sistem.

o Interaksi Multimodal: SO akan mendukung kombinasi input
suara, sentuhan, gesture, dan bahkan pikiran (melalui
antarmuka brain-computer) yang diinterpretasikan oleh Al.

Pemanfaatan Hardware AI/ML: Masa depan SO juga akan

melibatkan dukungan native untuk hardware yang dipercepat Al

(misalnya, Neural Processing Units/NPUs). SO perlu

menyediakan API dan driver yang efisien untuk memungkinkan

aplikasi Al dan fungsi OS vyang dipercepat Al untuk
memanfaatkan sepenuhnya kemampuan hardware ini.

95

B. Sistem Operasi untuk IoT dan Edge Computing
Proliferasi perangkat Internet of Things (loT) dan kebutuhan
akan pemrosesan data di dekat sumbernya (edge computing) telah
menciptakan segmen pasar baru yang menuntut sistem operasi yang
sangat spesifik. SO yang dirancang untuk 10T dan edge sangat
berbeda dari SO desktop atau server tradisional karena batasan
sumber daya yang ekstrem dan persyaratan fungsionalitas yang unik.

o Kebutuhan Spesifik OS untuk IoT: Perangkat 10T sangat beragam,
mulai dari sensor sederhana hingga smart appliance yang lebih
kompleks. SO untuk 10T harus memenuhi kriteria berikut:

o Footprint Sangat Kecil: Memori (RAM, flash storage) yang
terbatas. SO harus efisien dan ringkas.

o Konsumsi Daya Rendah: Banyak perangkat 10T bertenaga
baterai, sehingga SO harus mengelola daya secara ekstrem
(misalnya, dengan mode tidur dalam, siklus bangun-tidur yang
optimal).

o Kemampuan Real-Time (Opsional): Untuk beberapa aplikasi
IoT (misalnya, kontrol industri, otomotif), SO real-time

96

(RTOS) diperlukan untuk menjamin respons yang dapat
diprediksi dalam batasan waktu yang ketat.

Keamanan Kuat (Security from the Ground Up): Perangkat
loT seringkali rentan karena sumber daya terbatas dan
penyebaran yang luas. SO harus menyertakan fitur keamanan
bawaan seperti Secure Boot, enkripsi firmware, over-the-air
(OTA) updates yang aman, dan isolasi proses yang efisien.
Konektivitas Beragam: Dukungan untuk berbagai protokol
nirkabel dan jaringan jarak dekat (Wi-Fi, Bluetooth, Zigbee,
LoRaWAN, Thread).

Manajemen Jarak Jauh: Kemampuan untuk provisioning,
monitoring, dan updating perangkat dari jarak jauh.

Peran OS dalam Edge Computing: Edge computing adalah
paradigma komputasi di mana pemrosesan data dilakukan dekat
dengan sumber data (di "tepi” jaringan), bukan di pusat data cloud
yang jauh. Ini penting untuk aplikasi yang membutuhkan latensi
sangat rendah, bandwidth terbatas, atau privasi data.

o

SO Ringan dan Robust: Perangkat edge (misalnya, gateway
0T, mini-server) memerlukan SO yang cukup kuat untuk
melakukan pemrosesan data, analitik, dan bahkan
menjalankan model AI/ML, tetapi tetap efisien dan stabil
dalam lingkungan yang mungkin tidak terkontrol.

Dukungan Kontainerisasi: SO di edge sering mendukung
container runtime (misalnya, Docker) untuk menyebarkan dan
mengelola aplikasi secara efisien. Ini memungkinkan
pembaruan software yang mudah dan isolasi beban kerja.
Keamanan Terdistribusi: OS di edge harus mampu
berpartisipasi dalam model keamanan terdistribusi, menjaga

Q7

integritas dan kerahasiaan data yang diproses secara lokal
sebelum dikirim ke cloud.

Interoperabilitas Cloud-Edge: OS di edge harus dirancang
untuk berkomunikasi dan berintegrasi mulus dengan layanan
cloud, mengirimkan data yang telah diproses atau hanya hasil
akhir.

e Contoh OS untuk 10T dan Edge:

o

FreeRTOS, Zephyr OS, RIOT OS: RTOS dan SO embedded
yang dirancang untuk perangkat microcontroller berdaya
rendah.

Ubuntu Core, Fedora loT: Versi Linux yang ringan dan
dioptimalkan untuk perangkat 10T dan gateway edge, sering
menggunakan container atau snap packages untuk manajemen
aplikasi.

Microsoft Azure Sphere OS: SO berbasis Linux yang sangat
aman untuk perangkat 10T, dirancang dengan filosofi
"security-first".

Google Fuchsia: Seperti yang dibahas sebelumnya, Fuchsia
dirancang untuk beradaptasi dari perangkat kecil hingga besar,
dengan fokus pada modularitas dan keamanan untuk dunia
yang terhubung.

98

CLOUD COMPUTING EDGE COMPUTING

Apps & Data Apps & Data

NETWORK NETWORK

storage |
‘ l ';\"“("‘lv-x"uw sl EDGE SERVER

ﬂ»)f@ o T @

www.mfgrobots.com

C. Pengembangan OS Open Source

Model pengembangan open source telah membuktikan diri
sebagai kekuatan pendorong inovasi yang tak terbantahkan dalam
pengembangan perangkat lunak, dan ini sangat terlihat pada sistem
operasi. Kehadiran dan dominasi Linux, Android, dan berbagai
proyek open source lainnya menunjukkan bahwa kolaborasi
komunitas global adalah masa depan yang cerah untuk SO.

o Definisi dan Filosofi Open Source: Open source berarti kode
sumber perangkat lunak tersedia untuk umum, memungkinkan
siapa pun untuk melihat, memodifikasi, dan mendistribusikannya.
Ini didasarkan pada filosofi transparansi, kolaborasi, dan
meritokrasi.

e Manfaat Pengembangan OS Open Source:

o Transparansi dan Auditabilitas: Kode sumber yang terbuka
memungkinkan peneliti keamanan dan pengembang untuk
meninjau kode secara ekstensif, membantu mengidentifikasi
dan memperbaiki bug atau celah keamanan lebih cepat
daripada sistem proprietary. Ini meningkatkan kepercayaan.

Q9

Inovasi dan Fleksibilitas: Model open source mendorong
inovasi karena siapa pun dapat mengusulkan fitur baru,
mengembangkan patch, atau membuat fork proyek untuk
mengejar arah baru. Ini menghasilkan beragam distribusi dan
adaptasi yang sesuai untuk berbagai kebutuhan (misalnya,
Linux untuk server, desktop, embedded, superkomputer).
Stabilitas dan Keandalan: Ribuan mata yang meninjau kode
cenderung menemukan bug lebih cepat. Proyek open source
besar seperti kernel Linux memiliki proses pengujian dan
peninjauan yang sangat ketat yang melibatkan kontributor dari
seluruh dunia.

Biaya dan Aksesibilitas: Banyak SO open source tersedia
secara gratis, mengurangi hambatan masuk bagi individu,
startup, dan negara berkembang.

Kustomisasi: Organisasi atau individu dapat memodifikasi SO
open source untuk memenuhi kebutuhan spesifik mereka
tanpa terikat pada vendor lock-in.

Ketersediaan Sumber Daya Belajar: Kode sumber yang
terbuka dan komunitas yang aktif menyediakan sumber daya
belajar yang melimpah bagi pengembang dan mahasiswa.

Tantangan Pengembangan OS Open Source:

o

Fragmentasi (pada beberapa kasus): Terlalu banyak pilihan
atau fork dapat menyebabkan fragmentasi, meskipun ini juga
bisa menjadi kekuatan.

Dukungan Hardware: Kadang-kadang, driver hardware untuk
SO open source mungkin belum matang atau tidak tersedia
untuk hardware terbaru dibandingkan dengan SO proprietary.
Model Bisnis: Menemukan model bisnis yang berkelanjutan
untuk mendukung pengembangan open source bisa menjadi

100

tantangan, meskipun banyak perusahaan (Red Hat, Google,

Canonical) telah berhasil melakukannya.
Peran dalam Masa Depan SO: Model open source akan terus
menjadi kekuatan utama dalam pengembangan SO masa depan,
terutama dengan meningkatnya kompleksitas dan kebutuhan akan
kustomisasi di lingkungan seperti cloud, 10T, dan edge. Banyak
inovasi penting (seperti containerization dan banyak alat Al/ML)
dibangun di atas fondasi open source.

HTTP./ /ENSIKLOPEDIASLI.BLOGSPOT.CO.ID

» N £
ubuntu SUSE Mandriva fedora KNOPPIX MEPIS

[} 4
N, \=/

redhat soraris §enoo linX pcrinuxos Novell FfreeBsD

e § ©® 6

‘05 LuNnAe AUINOX slackvare kubuntu Vector

m
«

e~ ®
2 <D -3 -
R W " -
sevioree Centos deblan slax slimux xubuntu

Linux (Tux si penguin) atau ikon yang merepresentasikan open
source (misalnya, gembok terbuka dengan kode di dalamnya).
1. Beberapa "lkon Pengembang" (orang-orang kecil) yang saling

terhubung dengan panah atau garis, menuju ke sebuah "lkon Kode
Sumber" di tengah.

Di sekitar ikon kode sumber, bisa ditambahkan label seperti
"Kolaborasi", "Transparansi”, "Inovasi", "Keamanan".

Juga bisa menampilkan ikon yang merepresentasikan "Komunitas
Global™ (misalnya, peta dunia dengan orang-orang di atasnya)
yang berinteraksi dengan kode sumber.)*

101

D. Tantangan dan Peluang ke Depan

Masa depan sistem operasi akan diwarnai oleh tantangan yang

semakin kompleks sekaligus peluang inovasi yang belum pernah
terjadi sebelumnya.
o Tantangan Utama:

o

Keamanan Siber yang Semakin Canggih: Penyerang terus
mengembangkan metode baru. SO harus selangkah lebih maju
dengan model keamanan proaktif, zero-trust architectures,
dan integrasi Al untuk deteksi ancaman. Ancaman terhadap
supply chain perangkat lunak (misalnya, kerentanan dalam
komponen open source yang digunakan) juga menjadi
perhatian serius.

Privasi Data: Dengan semakin banyaknya data sensitif yang
dikumpulkan oleh perangkat, SO harus menyediakan kontrol
privasi yang lebih kuat, transparan, dan dapat dikelola oleh
pengguna, sesuai dengan regulasi global (GDPR, CCPA).
Kompleksitas yang Meningkat: Integrasi hardware baru
(komputasi kuantum, neuromorphic chips), AlI/ML, loT, dan
edge computing membuat SO semakin kompleks. Mengelola
kompleksitas ini tanpa mengorbankan stabilitas dan performa
adalah tantangan besar.

Fragmentasi Ekosistem: Terutama di segmen mobile dan 10T,
fragmentasi hardware dan software terus menjadi masalah
yang menghambat pembaruan dan konsistensi.

Efisiensi Daya dan Keberlanjutan: Dengan miliaran perangkat,
konsumsi daya menjadi isu keberlanjutan. SO harus terus
berinovasi dalam manajemen daya yang lebih cerdas untuk
mengurangi jejak karbon komputasi.

102

Peluang Inovasi:

o

Komputasi Kuantum dan SO Kuantum: Pengembangan SO
khusus untuk mengelola guantum computers adalah bidang
yang baru muncul, menangani tantangan unik dari qubit dan
algoritma kuantum.

Arsitektur CPU Baru: Munculnya arsitektur CPU seperti
ARM (di luar mobile, juga di desktop dan server) dan
kemungkinan processor berbasis RISC-V mendorong SO
untuk menjadi lebih portable dan adaptif terhadap hardware
heterogen.

Sistem Operasi yang Benar-benar Adaptif/Self-Healing: SO
masa depan mungkin akan lebih proaktif dalam mendeteksi
dan memperbaiki masalahnya sendiri (misalnya,
mengidentifikasi dan mengisolasi komponen yang rusak,
memulihkan konfigurasi, atau bahkan memprediksi kegagalan
hardware).

Interaksi Manusia-Komputer yang Revolusioner: Dengan Al,
SO dapat memfasilitasi antarmuka yang lebih alami—mulai
dari augmented reality (AR), virtual reality (VR), hingga
antarmuka brain-computer, mengubah cara kita berinteraksi
dengan informasi dan perangkat.

SO untuk Komputasi Spasial: Dengan kemajuan AR/VR,
kebutuhan akan SO yang dapat mengelola lingkungan
komputasi 3D dan interaksi spasial akan meningkat.
Keamanan Terverifikasi Formal: Penggunaan metode
verifikasi formal untuk membuktikan kebenaran kode kernel
dan komponen kritis, meningkatkan jaminan keamanan secara
matematis.

103

Masa depan sistem operasi akan menjadi masa di mana SO tidak lagi
hanya sekadar pengelola sumber daya, tetapi menjadi entitas yang
semakin cerdas, responsif, dan terintegrasi secara mulus dengan dunia
fisik dan digital kita. Kemampuan untuk menyeimbangkan inovasi
dengan keamanan, privasi, dan keberlanjutan akan menjadi kunci
keberhasilannya..

104

DAFTAR PUSTAKA

Krutz, R. L., & Vines, R. D. (2010). Cloud Security: A
Comprehensive Guide to Secure Cloud Computing. Wiley.

Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating
System Concepts (10th ed.). Wiley.

Stallings, W. (2018). Operating Systems: Internals and Design
Principles (9th ed.). Pearson.

Tanenbaum, A. S., & Bos, H. (2015). Modern Operating Systems (4th
ed.). Pearson.

Williams, B. (2019). Computer Systems Architecture: A Networking
Approach. Springer.

Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). *Operating
system concepts* (10th ed.). Wiley.

Tanenbaum, A. S., & Bos, H. (2014). *Modern operating systems*
(4th ed.). Pearson.

Stallings, W. (2017). *Operating systems: Internals and design
principles* (9th ed.). Pearson.

Bovet, D. P., & Cesati, M. (2005). *Understanding the Linux kernel*
(3rd ed.). O’Reilly Media.

Love, R. (2010). *Linux kernel development* (3rd ed.). Addison-
Wesley.

Microsoft. (2023). *Windows 11 documentation*. Retrieved from
https://learn.microsoft.com

Apple Inc. (2023). *macOS security overview*. Retrieved from
https://developer.apple.com

105

https://learn.microsoft.com/
https://developer.apple.com/

The Linux Foundation. (2023). *Linux documentation project*.
Retrieved from https://www.kernel.org

Google. (2023). *Android open source project (AOSP)
documentation*. Retrieved from https://source.android.com

Docker Inc. (2023). *Docker documentation*. Retrieved from
https://docs.docker.com

VMware. (2023). *vSphere virtualization guide*. Retrieved from
https://www.vmware.com

FreeRTOS. (2023). *FreeRTOS reference manual*. Retrieved from
https://www.freertos.org

Open Group. (2023). *UNIX system standards and architecture*.
Retrieved from https://pubs.opengroup.org

Intel. (2023). *Intel virtualization technology documentation*.
Retrieved from https://www.intel.com

Kubernetes. (2023). *Kubernetes documentation*. Retrieved from
https://kubernetes.io

106

https://www.kernel.org/
https://source.android.com/
https://docs.docker.com/
https://www.vmware.com/
https://www.freertos.org/
https://pubs.opengroup.org/
https://www.intel.com/

	COVER MARTI.pdf
	Page 1

