

SISTEM OPERASI MODERN

HALAMAN JUDUL

Penulis :

Dr. Marti Widya Sari, S.T., M.Eng

 ii

SISTEM OPERASI MODERN

Penulis : Dr. Marti Widya Sari, S.T., M.Eng

Editor : Reza Diapratama, S.Kom

Layout : Prayitno

Cover : Reza Diapratama, S.Kom

Cetakan Pertama, Oktober 2025

17 cm x 23 cm + v + 106

ISBN : 978-623-8551-40-8

Penerbit :

UPY Press

Lembaga Penelitian dan Pengabdian Masyarakat

Unit 4 Lantai 4

Jl. PGRI I Sonosewu No. 117 Yogyakarta

Telp (0274) 376808, 373198,418077, Fax (0274) 376808

Email: upypress@gmail.com

Web: upypress.upy.ac.id

Hak cipta dilindungi oleh Undang-Undang

Dilarang memperbanyak karya tulisan ini tanpa izin tertulis dari

Penerbit

Cetakan I, Oktober 2025

 iii

KATA PENGANTAR

Segala puji syukur penulis panjatkan ke hadirat Allah SWT

atas limpahan rahmat dan karunia-Nya sehingga buku dengan judul

―Sistem Operasi Modern‖ ini dapat disusun dan diselesaikan dengan

baik.

Buku ini disusun sebagai salah satu bahan ajar untuk

mendukung kegiatan pembelajaran dalam mata kuliah Sistem

Operasi, khususnya yang membahas perkembangan sistem operasi

modern. Materi dalam buku ini mencakup berbagai topik penting

mulai dari arsitektur sistem operasi, virtualisasi, cloud computing,

sistem embedded, hingga keamanan dan integrasi kecerdasan buatan.

Harapannya, buku ini dapat menjadi panduan bagi mahasiswa dan

pembaca umum untuk memahami esensi dan arah perkembangan

sistem operasi di era komputasi masa kini.

Penyusunan buku ini juga didasarkan pada berbagai referensi

terkini dan studi literatur dari sumber-sumber akademik yang

kredibel, serta dilengkapi dengan contoh-contoh nyata dari sistem

operasi modern yang digunakan secara luas saat ini, seperti Windows

11, macOS, Linux, Android, dan iOS.

Penulis menyadari masih terdapat kekurangan dalam buku ini.

Oleh karena itu, kritik dan saran yang membangun sangat diharapkan

demi penyempurnaan edisi selanjutnya.

Semoga buku ini dapat memberikan manfaat yang sebesar-

besarnya bagi seluruh pembaca dan menjadi bagian dari upaya

peningkatan mutu pendidikan di bidang teknologi informasi.

Yogyakarta, 30 September 2025

Penulis

 iv

DAFTAR ISI

HALAMAN JUDUL .. i

KATA PENGANTAR ... iii

DAFTAR ISI ... iv

BAB 1: PENDAHULUAN SISTEM OPERASI MODERN 1

A. Definisi Sistem Operasi Modern ... 1

B. Perbandingan Sistem Operasi Tradisional dan Modern 4

C. Tren dan Inovasi Teknologi Sistem Operasi 8

D. Contoh Sistem Operasi Modern (Windows 11, macOS, Linux,

Android, iOS) ... 11

BAB 2: ARSITEKTUR DAN DESAIN SISTEM OPERASI

MODERN .. 15

A. Modularitas dan Microkernel .. 15

B. Desain Berbasis Layanan (Service-Oriented OS) 19

C. Pendekatan Container dan Virtualisasi 21

D. Sistem Operasi Real-Time dan Embedded 24

BAB 3: VIRTUALISASI DAN CLOUD COMPUTING 27

A. Konsep Virtualisasi ... 27

B. Sistem Operasi dalam Lingkungan Virtual 34

C. Integrasi Sistem Operasi dengan Platform Cloud 37

D. Sistem Operasi sebagai Layanan (OSaaS) 41

BAB 4: SISTEM OPERASI MOBILE DAN PERANGKAT

RINGAN .. 45

A. Ciri Khas OS Mobile .. 45

B. Manajemen Daya dan Konektivitas .. 48

 v

C. Fragmentasi dan Keamanan .. 50

D. Perbandingan Android dan iOS .. 52

BAB 5. SISTEM OPERASI JARINGAN DAN TERDISTRIBUSI . 57

A. Sistem Operasi Jaringan (Network Operating System) 57

B. Sistem Operasi Terdistribusi (Distributed Operating System) 61

C. Manajemen Sumber Daya Terdistribusi 63

D. Contoh OS Terdistribusi (Google Fuchsia, Plan 9)................. 65

BAB 6: KEAMANAN PADA SISTEM OPERASI MODERN 69

A. Model Keamanan Modern (Mandatory Access Control,

SELinux, AppArmor) ... 69

B. Isolasi Proses dan Sandbox ... 74

C. Enkripsi dan Perlindungan Data ... 77

D. Update Keamanan dan Patch Management 79

BAB 7: KONTROL VERSI, PEMBARUAN, DAN AUTOMASI ... 83

A. Continuous Integration dan Continuous Deployment (CI/CD)

 .. 83

B. Sistem Pembaruan Otomatis OS ... 87

C. Manajemen Versi Kernel dan Komponen OS 89

BAB 8: MASA DEPAN SISTEM OPERASI 93

A. Integrasi dengan AI dan Machine Learning 93

B. Sistem Operasi untuk IoT dan Edge Computing 96

C. Pengembangan OS Open Source .. 99

D. Tantangan dan Peluang ke Depan ... 102

DAFTAR PUSTAKA ... 105

 1

BAB 1: PENDAHULUAN SISTEM OPERASI
MODERN

Sistem operasi (SO) merupakan fondasi utama yang

memungkinkan perangkat keras komputer berfungsi dan berinteraksi

dengan perangkat lunak aplikasi. Seiring dengan perkembangan

teknologi informasi yang pesat, sistem operasi juga terus berevolusi

dari bentuk tradisionalnya menjadi sistem operasi modern yang

memiliki kapabilitas lebih canggih dan adaptif terhadap berbagai

lingkungan komputasi. Evolusi ini didorong oleh kebutuhan akan

performa yang lebih tinggi, keamanan yang lebih baik, efisiensi

sumber daya, serta kemampuan untuk mendukung paradigma

komputasi baru seperti cloud computing, mobile, dan Internet of

Things (IoT). Bab ini akan menguraikan definisi sistem operasi

modern, membandingkannya secara fundamental dengan sistem

operasi tradisional, membahas tren dan inovasi terkini yang

membentuk lanskap SO saat ini, serta memberikan contoh sistem

operasi modern yang dominan dan banyak digunakan di berbagai

platform.

A. Definisi Sistem Operasi Modern

Sistem Operasi (SO) secara fundamental adalah perangkat lunak

sistem yang berfungsi sebagai manajer sumber daya perangkat keras

komputer dan perangkat lunak, sekaligus menyediakan layanan dasar

untuk program aplikasi. Ini termasuk manajemen prosesor, memori,

perangkat I/O (input/output), serta sistem file. SO bertindak sebagai

antarmuka perantara, menyederhanakan interaksi kompleks antara

pengguna, aplikasi, dan perangkat keras, sehingga pengguna dapat

 2

menjalankan program tanpa perlu memahami detail teknis tingkat

rendah dari perangkat keras.

Namun, "sistem operasi modern" memiliki konotasi yang lebih

spesifik, mencerminkan evolusi signifikan dari pendahulunya. SO

modern adalah sistem yang dirancang untuk mengatasi tantangan dan

memanfaatkan peluang dari arsitektur komputasi kontemporer dan

kebutuhan pengguna yang semakin kompleks. Karakteristik utama

yang mendefinisikan sistem operasi modern mencakup:

1. Dukungan Penuh untuk Arsitektur Multi-core dan Paralelisme

Berbeda dengan SO tradisional yang mungkin hanya mendukung

satu inti prosesor atau multi-tasking sederhana, SO modern

dioptimalkan untuk memanfaatkan sepenuhnya arsitektur multi-

core dan multi-threaded. Ini melibatkan algoritma penjadwalan

proses yang canggih untuk mendistribusikan beban kerja secara

efisien ke berbagai inti CPU, memungkinkan eksekusi paralel dari

banyak tugas dan meningkatkan responsivitas sistem secara

keseluruhan.

2. Arsitektur Modular dan Mikrokernel (atau Hybrid) Sebagian besar

SO tradisional mengadopsi arsitektur monolitik, di mana semua

komponen inti (manajemen memori, device driver, sistem file,

dll.) berada dalam satu blok kernel besar. SO modern seringkali

beralih ke arsitektur yang lebih modular, termasuk desain

mikrokernel (kernel minimal dengan layanan inti di ruang

pengguna) atau hybrid kernel. Pendekatan ini meningkatkan

stabilitas (karena kegagalan satu komponen di ruang pengguna

tidak meruntuhkan seluruh kernel), keamanan (isolasi antar

komponen), dan kemudahan pemeliharaan serta pembaruan.

3. Manajemen Memori Virtual yang Canggih SO modern

mengimplementasikan sistem memori virtual yang robust,

memungkinkan aplikasi untuk mengakses memori lebih dari yang

 3

tersedia secara fisik. Ini dicapai melalui teknik paging dan

swapping, serta alokasi memori dinamis. Selain itu, perlindungan

memori antarproses sangat krusial, mencegah satu aplikasi untuk

mengakses atau merusak ruang memori aplikasi lain atau kernel

itu sendiri, yang meningkatkan stabilitas dan keamanan sistem.

4. Mekanisme Keamanan Terintegrasi yang Kuat Dengan semakin

maraknya ancaman siber, keamanan menjadi prioritas utama. SO

modern memiliki lapisan keamanan berlapis yang terintegrasi,

termasuk kontrol akses wajib (Mandatory Access Control/MAC)

seperti SELinux dan AppArmor, yang menerapkan kebijakan

keamanan ketat di luar kendali pengguna. Fitur sandboxing dan

isolasi proses memastikan bahwa aplikasi berbahaya tidak dapat

mempengaruhi bagian lain dari sistem. Enkripsi native (misalnya,

enkripsi full-disk) juga menjadi standar untuk melindungi data

saat rest.

5. Dukungan Jaringan yang Komprehensif dan Terdistribusi SO

modern dibangun dengan kemampuan jaringan yang mendalam,

mendukung berbagai protokol komunikasi (TCP/IP, UDP, dll.)

dan layanan jaringan yang kompleks. Ini memungkinkan

konektivitas yang lancar ke internet, cloud services, dan arsitektur

terdistribusi, di mana sumber daya dan komputasi tersebar di

beberapa mesin.

6. Antarmuka Pengguna Grafis (GUI) yang Intuitif dan Responsif

Evolusi dari Command Line Interface (CLI) ke GUI telah

membuat komputer lebih mudah diakses. SO modern menawarkan

GUI yang kaya fitur visual, mendukung interaksi multi-sentuh,

suara, bahkan gesture. Desain yang responsif memastikan

pengalaman pengguna yang lancar di berbagai ukuran layar dan

perangkat.

 4

7. Skalabilitas dan Fleksibilitas SO modern dirancang untuk

beradaptasi dengan berbagai skala dan jenis perangkat keras,

mulai dari perangkat embedded berdaya rendah (misalnya, untuk

IoT), smartphone, tablet, laptop, desktop, hingga server enterprise

dan infrastruktur cloud yang masif. Fleksibilitas ini

memungkinkan SO yang sama atau turunannya untuk digunakan

dalam berbagai konteks komputasi.

8. Dukungan Virtualisasi dan Kontainerisasi Kemampuan untuk

menjalankan beberapa sistem operasi atau aplikasi terisolasi pada

satu perangkat keras fisik adalah ciri khas SO modern. SO modern

menyediakan dukungan bawaan untuk teknologi hypervisor

(seperti Type 1 dan Type 2) untuk virtualisasi mesin virtual (VM)

dan juga mendukung kontainerisasi (misalnya, Docker) untuk

isolasi aplikasi yang lebih ringan dan efisien.

B. Perbandingan Sistem Operasi Tradisional dan

Modern

Untuk memahami sepenuhnya esensi sistem operasi modern,

penting untuk melihat perbedaannya dengan sistem operasi tradisional

yang mendahuluinya. Perbedaan ini tidak hanya terletak pada fitur

permukaan, tetapi juga pada filosofi desain, arsitektur internal, dan

respons terhadap kebutuhan komputasi pada masanya.

1. Sistem Operasi Tradisional (Contoh: MS-DOS, Awal Windows

95, Unix Awal)

2. Fokus Operasional: Umumnya dirancang untuk komputasi single-

user atau single-tasking, atau batch processing pada era

mainframe. Interaksi real-time dengan banyak aplikasi secara

bersamaan masih terbatas.

3. Arsitektur Kernel: Mayoritas menggunakan arsitektur monolitik.

Seluruh komponen kernel (penjadwal CPU, manajemen memori,

 5

device driver, sistem file, layanan jaringan) dikompilasi menjadi

satu blok kode besar yang berjalan di privileged mode.

Keuntungan dari arsitektur ini adalah performa yang cepat karena

semua komponen berada dalam ruang alamat yang sama. Namun,

kelemahannya adalah stabilitas yang rentan – bug atau driver

perangkat yang tidak stabil dapat menyebabkan kernel panic dan

meruntuhkan seluruh sistem.

4. Antarmuka Pengguna: Umumnya berbasis Command Line

Interface (CLI) seperti MS-DOS, di mana pengguna mengetikkan

perintah teks. Beberapa memiliki GUI sangat dasar (misalnya,

Windows 1.0 atau awal Windows 95) yang terbatas

fungsionalitasnya.

5. Manajemen Sumber Daya: Terbatas. Manajemen memori

seringkali sederhana tanpa perlindungan memori yang kuat

antarprogram. Penjadwalan proses primitif, kurang efisien untuk

multi-tasking yang berat.

6. Jaringan: Kapabilitas jaringan sangat minim atau tidak ada sama

sekali secara native. Implementasi jaringan biasanya memerlukan

penambahan software pihak ketiga yang kompleks.

7. Keamanan: Fokus pada perlindungan file dasar dan otentikasi

single-user. Mekanisme keamanan tidak dirancang untuk

menahan ancaman siber kompleks atau lingkungan multi-user

yang hostile. Konsep privileged mode dan user mode ada, tetapi

isolasi kurang ketat.

8. Skalabilitas: Rendah. Sulit untuk diadaptasi ke perangkat keras

baru atau diperluas untuk mendukung skala komputasi yang lebih

besar.

9. Virtualisasi/Kontainerisasi: Sama sekali tidak mendukung konsep

ini secara native, karena virtualisasi memerlukan abstraksi

perangkat keras yang canggih yang tidak dimiliki SO tradisional.

 6

10. Sistem Operasi Modern (Contoh: Windows 11, macOS, Linux,

Android, iOS)

11. Fokus Operasional: Dirancang untuk komputasi multi-tasking,

multi-user, client-server, komputasi terdistribusi, cloud

computing, dan mobile. Mampu menjalankan banyak aplikasi

secara bersamaan dengan responsivitas tinggi.

12. Arsitektur Kernel: Cenderung mengadopsi arsitektur modular,

mikrokernel, atau hybrid kernel.

a. Mikrokernel: Kernel inti sangat kecil, hanya menangani fungsi

dasar seperti manajemen memori tingkat rendah, penjadwalan

proses, dan inter-process communication (IPC). Sebagian

besar layanan SO (sistem file, device driver, jaringan) berjalan

sebagai proses terpisah di ruang pengguna (misalnya, QNX).

Ini meningkatkan stabilitas dan keamanan.

b. Hybrid Kernel: Menggabungkan elemen monolitik dan

mikrokernel, di mana beberapa layanan non-esensial

dipindahkan ke ruang pengguna, tetapi device driver dan

layanan penting lainnya tetap di kernel untuk performa

(misalnya, Windows NT Family, macOS).

c. Modular Monolitik: Kernel Linux secara teknis adalah

monolitik, tetapi sangat modular dengan kemampuan memuat

dan membongkar modul driver secara dinamis, memberikan

fleksibilitas tanpa mengorbankan performa.

d. Antarmuka Pengguna: Dominan Antarmuka Pengguna Grafis

(GUI) yang canggih, intuitif, responsif, dan kaya fitur visual.

Mendukung berbagai input (sentuhan, suara, gesture, stylus)

dan adaptif terhadap resolusi layar yang berbeda.

e. Manajemen Sumber Daya: Sangat canggih. Menggunakan

preemptive multi-tasking untuk memastikan setiap proses

mendapat waktu CPU yang adil. Manajemen memori virtual

 7

dengan demand paging dan swapping yang efisien. Sistem file

yang journaling untuk integritas data.

f. Jaringan: Terintegrasi penuh dengan berbagai protokol

jaringan dan API untuk cloud services, VPN, firewall, dan

komunikasi peer-to-peer. Dirancang untuk lingkungan yang

selalu terhubung.

g. Keamanan: Dibangun dengan filosofi "keamanan berlapis"

(defense-in-depth). Ini mencakup:

1) Mandatory Access Control (MAC): Kebijakan akses yang

ditentukan oleh sistem administrator, bukan pengguna,

untuk keamanan yang lebih tinggi.

2) Isolasi Proses dan Sandboxing: Setiap aplikasi berjalan

dalam lingkungan terisolasi untuk mencegah akses tidak

sah atau kerusakan sistem.

3) Enkripsi Data: Fitur enkripsi full-disk atau file-level secara

bawaan untuk melindungi data dari akses fisik tidak sah.

4) Pembaruan Otomatis: Mekanisme patch management dan

update keamanan reguler untuk menambal kerentanan.

h. Skalabilitas: Tinggi, dapat menyesuaikan performa dan fitur

dari perangkat berdaya rendah (IoT) hingga server enterprise

bertenaga tinggi, serta lingkungan cloud berskala petabyte.

i. Virtualisasi/Kontainerisasi: Dukungan bawaan untuk teknologi

hypervisor (baik Type 1 maupun Type 2) dan container

runtime (misalnya, Docker). Ini memungkinkan efisiensi

sumber daya dan isolasi aplikasi yang lebih baik, menjadi

fundamental dalam arsitektur cloud dan microservices.

 8

C. Tren dan Inovasi Teknologi Sistem Operasi

Lanskap teknologi yang terus berubah menuntut sistem operasi

untuk terus berinovasi. Beberapa tren dan inovasi kunci yang secara

signifikan membentuk arah pengembangan sistem operasi modern

meliputi:

1. Komputasi Awan (Cloud Computing) dan Virtualisasi:

a. SO sebagai Guest di Cloud: Banyak SO modern dioptimalkan

untuk berjalan sebagai mesin virtual (VM) di infrastruktur

cloud publik maupun privat. Ini memerlukan kernel yang

efisien dalam lingkungan virtual dan driver yang kompatibel

dengan hypervisor.

b. SO sebagai Host untuk Cloud: SO seperti Linux banyak

digunakan sebagai sistem operasi host untuk hypervisor

(misalnya, KVM) yang menjalankan VM di cloud.

c. Abstraksi Sumber Daya: Inovasi dalam SO cloud berfokus

pada abstraksi sumber daya fisik menjadi sumber daya virtual

yang dapat disekalakan secara dinamis, memungkinkan model

Infrastructure as a Service (IaaS) dan Platform as a Service

(PaaS).

2. Internet of Things (IoT) dan Edge Computing:

a. SO Ringan dan Hemat Daya: Perangkat IoT memiliki sumber

daya yang sangat terbatas (memori, prosesor, daya). Ini

mendorong pengembangan SO yang sangat ringan dan real-

time seperti FreeRTOS, Zephyr OS, dan RIOT OS, yang

dirancang untuk footprint kecil, konsumsi daya minimal, dan

kemampuan respons cepat untuk aplikasi kritis.

b. Keamanan di Edge: Keamanan menjadi tantangan besar di

perangkat IoT. SO untuk edge computing berinovasi dalam

fitur keamanan perangkat keras (Hardware Root of Trust),

 9

firmware update yang aman, dan isolasi proses untuk

melindungi data di tepi jaringan.

3. Integrasi Kecerdasan Buatan (AI) dan Pembelajaran Mesin (ML):

a. Optimasi Sumber Daya Adaptif: AI/ML digunakan dalam SO

untuk mempelajari pola penggunaan pengguna dan aplikasi,

kemudian mengoptimalkan alokasi sumber daya (CPU,

memori, I/O) secara dinamis untuk performa yang lebih baik

dan efisiensi energi.

b. Peningkatan Keamanan Prediktif: ML dapat menganalisis

perilaku sistem dan mendeteksi anomali yang

mengindikasikan serangan siber atau malware lebih cepat

daripada metode deteksi berbasis tanda tangan tradisional.

c. Antarmuka Pengguna Cerdas: Asisten virtual (misalnya,

Cortana, Siri, Google Assistant) semakin terintegrasi dalam

SO, menggunakan AI untuk memahami perintah suara dan

memberikan respons kontekstual.

4. Kontainerisasi dan Microservices:

a. Dukungan Kernel untuk Kontainer: SO modern, terutama

Linux, menyediakan fitur kernel (seperti namespaces dan

cgroups) yang menjadi dasar bagi teknologi kontainer seperti

Docker dan Kubernetes. Ini memungkinkan aplikasi untuk

dikemas dan dijalankan dalam lingkungan terisolasi yang

lebih ringan dan cepat daripada VM.

b. Arsitektur Microservices: Kontainer memfasilitasi adopsi

arsitektur microservices, di mana aplikasi dipecah menjadi

layanan-layanan kecil yang independen. SO modern harus

efisien dalam mengelola banyak kontainer yang berjalan

secara bersamaan.

 10

5. Keamanan Proaktif dan Privasi Data:

a. Zero-Trust Security: SO modern bergerak menuju model

keamanan zero-trust, di mana setiap permintaan akses

diverifikasi tanpa asumsi kepercayaan.

b. Perlindungan Data End-to-End: Peningkatan dalam enkripsi

data di seluruh tumpukan, dari penyimpanan (data at rest)

hingga transmisi (data in transit).

c. Privasi Pengguna: SO kini memberikan kontrol yang lebih

granular kepada pengguna atas izin aplikasi dan akses data

pribadi, sejalan dengan regulasi privasi seperti GDPR.

6. Pengembangan Open Source dan Kolaborasi Komunitas:

a. Model pengembangan open source, yang dipelopori oleh

Linux, telah membuktikan diri sebagai pendorong inovasi

yang kuat. Komunitas global dapat meninjau kode,

menemukan bug, mengembangkan fitur baru, dan

mengoptimalkan kinerja. Ini seringkali menghasilkan SO yang

lebih aman, stabil, dan fleksibel karena transparansi dan

keterlibatan kolektif. Proyek-proyek seperti Android (berbasis

Linux) dan berbagai distribusi Linux menunjukkan kekuatan

model ini.

 11

Gambar 1.1

D. Contoh Sistem Operasi Modern (Windows 11,

macOS, Linux, Android, iOS)

Untuk memberikan gambaran yang lebih konkret, berikut

adalah beberapa contoh sistem operasi modern yang saat ini

mendominasi berbagai segmen pasar komputasi, masing-masing

dengan karakteristik unik dan area fokusnya:

1. Windows 11:

a. Platform: Desktop, Laptop, Tablet (khususnya untuk

produktivitas).

b. Karakteristik: Penerus Windows 10, menawarkan antarmuka

pengguna yang dirancang ulang dengan fokus pada

kesederhanaan dan produktivitas. Fitur-fitur modernnya

mencakup Snap Layouts dan Snap Groups untuk multi-tasking

yang lebih baik, integrasi Microsoft Teams yang mendalam,

 12

dan yang paling revolusioner adalah kemampuan untuk

menjalankan aplikasi Android secara native melalui Amazon

Appstore. Keamanan ditingkatkan dengan persyaratan Trusted

Platform Module (TPM) 2.0 dan Secure Boot.

c. Penggunaan: Sangat populer untuk penggunaan pribadi,

gaming, produktivitas kantor, dan pengembangan software.

2. macOS:

a. Platform: Desktop, Laptop (Produk Apple).

b. Karakteristik: Dikenal dengan desain antarmuka yang elegan,

stabilitas yang sangat baik, dan integrasi yang erat dalam

ekosistem perangkat keras dan lunak Apple. macOS unggul

dalam manajemen daya, grafis canggih, dan fitur keamanan

serta privasi yang ketat. Pembaruan berkelanjutan membawa

inovasi seperti fitur keamanan Gatekeeper dan sandboxing

aplikasi yang ketat.

c. Penggunaan: Populer di kalangan profesional kreatif,

pengembang software, dan pengguna yang mencari

pengalaman komputasi premium dan terintegrasi.

3. Linux:

a. Platform: Server, Superkomputer, Desktop, Laptop, Embedded

Devices, IoT.

b. Karakteristik: Merupakan keluarga sistem operasi open source

yang dibangun di atas kernel Linux. Kekuatan utamanya

adalah fleksibilitas, skalabilitas, dan stabilitas luar biasa.

Tersedia dalam berbagai "distribusi" (misalnya, Ubuntu,

Fedora, Debian, Red Hat Enterprise Linux) yang disesuaikan

untuk berbagai kebutuhan. Linux menjadi tulang punggung

 13

internet, cloud computing, dan banyak infrastruktur enterprise

karena keamanannya yang kuat dan efisiensi sumber dayanya.

c. Penggunaan: Dominan di lingkungan server dan cloud, banyak

digunakan oleh pengembang, peneliti, dan pengguna yang

mengutamakan kustomisasi dan kontrol.

4. Android:

a. Platform: Smartphone, Tablet, Smart TV, Smartwatch, Mobil

(Android Auto), Perangkat IoT.

b. Karakteristik: Sistem operasi mobile paling dominan di dunia,

dikembangkan oleh Google dan berbasis kernel Linux.

Dikenal karena sifatnya yang open source (meskipun dengan

lapisan proprietary Google Mobile Services), ekosistem

aplikasi yang sangat luas (Google Play Store), dan fleksibilitas

untuk disesuaikan oleh berbagai produsen perangkat. Android

terus berinovasi dalam manajemen daya (Doze Mode),

keamanan aplikasi (sandboxing, izin granular), dan fitur-fitur

AI.

c. Penggunaan: Utama untuk smartphone dan tablet, menjadi

dasar bagi sebagian besar perangkat mobile non-Apple.

5. iOS:

a. Platform: iPhone, iPad, iPod Touch.

b. Karakteristik: Sistem operasi mobile eksklusif Apple, dikenal

dengan antarmuka pengguna yang sangat intuitif dan mudah

digunakan, performa yang mulus, dan fokus yang kuat pada

privasi serta keamanan pengguna. iOS menerapkan kontrol

ketat pada ekosistem aplikasinya melalui App Store,

memastikan kualitas dan meminimalkan risiko malware.

Integrasi mendalam dengan perangkat keras Apple dan

layanan cloud (iCloud) memberikan pengalaman yang

kohesif.

 14

c. Penggunaan: Utama untuk smartphone dan tablet premium

dari Apple.

Gambar 1.2

 15

BAB 2: ARSITEKTUR DAN DESAIN
SISTEM OPERASI MODERN

Desain arsitektur merupakan inti dari fungsionalitas dan kinerja

sebuah sistem operasi. Sistem operasi modern, berbeda dengan

pendahulunya, dirancang untuk menghadapi kompleksitas komputasi

saat ini, termasuk kebutuhan akan skalabilitas, keamanan, efisiensi,

dan kemampuan beradaptasi dengan lingkungan komputasi yang

beragam. Bab ini akan mengulas prinsip-prinsip arsitektur dan desain

fundamental yang membentuk sistem operasi modern, termasuk

konsep modularitas dan mikrokernel, desain berbasis layanan,

pendekatan kontainer dan virtualisasi, serta karakteristik khusus dari

sistem operasi real-time dan embedded. Pemahaman mendalam

tentang arsitektur ini krusial untuk mengapresiasi kapabilitas dan

inovasi yang ada pada SO masa kini.

A. Modularitas dan Microkernel

Arsitektur sebuah sistem operasi sangat menentukan stabilitas,

keamanan, dan kemudahan pengembangannya. Secara historis,

banyak sistem operasi awal mengadopsi desain monolitik, di mana

seluruh layanan sistem inti—seperti manajemen proses, manajemen

memori, sistem file, device driver, dan layanan jaringan—dikompilasi

menjadi satu blok kode besar yang berjalan dalam ruang kernel

(kernel space), yaitu bagian yang paling privileged dari sistem.

Keuntungan utama dari arsitektur monolitik adalah kinerja yang

tinggi karena semua komponen dapat berkomunikasi langsung tanpa

overhead komunikasi antarproses. Namun, kelemahannya signifikan:

kegagalan di satu komponen (misalnya, bug pada device driver) dapat

 16

meruntuhkan seluruh kernel (kernel panic), menyebabkan sistem

crash. Selain itu, sulit untuk melakukan pembaruan atau modifikasi

pada satu komponen tanpa harus mengkompilasi ulang seluruh kernel.

1. Sebagai respons terhadap keterbatasan ini, arsitektur modularitas

dan mikrokernel muncul sebagai paradigma desain kunci dalam

sistem operasi modern.

2. Modularitas: Konsep modularitas menekankan pemisahan

fungsionalitas sistem operasi ke dalam unit-unit yang lebih kecil

dan terisolasi, yang disebut modul. Modul-modul ini dapat dimuat

(load) atau dibongkar (unload) dari kernel saat sistem berjalan

tanpa memerlukan reboot total. Kernel Linux, meskipun secara

teknis sering disebut monolitik, sebenarnya sangat modular,

memungkinkan penambahan atau penghapusan device driver atau

fitur tertentu sebagai modul kernel yang dapat dimuat secara

dinamis (loadable kernel modules). Ini meningkatkan fleksibilitas,

mempermudah pemeliharaan, dan mengurangi ukuran kernel

dasar.

3. Mikrokernel: Arsitektur mikrokernel adalah bentuk modularitas

yang paling ekstrem. Dalam desain mikrokernel, kernel inti dijaga

sekecil mungkin, hanya mencakup fungsi-fungsi paling esensial

seperti:

4. Manajemen Komunikasi Antarproses (IPC - Inter-Process

Communication): Mekanisme untuk proses-proses yang berbeda

(termasuk server layanan) dapat saling berkomunikasi.

5. Manajemen Memori Tingkat Rendah: Pengelolaan ruang alamat

virtual dasar dan perlindungan memori.

6. Penjadwalan Proses Dasar: Penjadwalan thread dan proses yang

sangat primitif.

 17

7. Semua layanan sistem operasi lainnya—seperti sistem file, device

driver, networking stack, dan manajemen hardware yang lebih

kompleks—dipindahkan dari ruang kernel ke ruang pengguna

(user space) dan dijalankan sebagai proses-proses terpisah yang

disebut server. Server-server ini berkomunikasi dengan

mikrokernel dan satu sama lain melalui mekanisme IPC.

8. Kelebihan Mikrokernel:

a. Stabilitas dan Keandalan yang Lebih Tinggi: Jika satu server

layanan mengalami crash (misalnya, device driver kartu

jaringan), hanya server tersebut yang terpengaruh, bukan

seluruh kernel. Sistem operasi dapat memulihkan atau me-

restart server yang crash tanpa reboot sistem.

b. Keamanan yang Lebih Baik: Karena layanan berada di ruang

pengguna, mereka memiliki privilege yang lebih rendah dan

terisolasi satu sama lain. Ini membatasi kerusakan yang dapat

ditimbulkan oleh bug atau serangan malware pada satu

komponen.

c. Fleksibilitas dan Kemudahan Pengembangan: Pengembang

dapat menambah, menghapus, atau memodifikasi layanan

sistem tanpa harus memodifikasi atau mengkompilasi ulang

kernel inti. Ini memungkinkan pengembangan yang lebih

cepat dan adaptasi yang lebih mudah terhadap perangkat keras

atau fitur baru.

d. Portabilitas: Kernel yang lebih kecil dan lebih terdefinisi

dengan baik cenderung lebih mudah untuk di-porting ke

arsitektur hardware yang berbeda.

 18

9. Kekurangan Mikrokernel:

a. Performa yang Berpotensi Lebih Rendah: Komunikasi

antarproses melalui IPC memerlukan context switch dan

message passing, yang menimbulkan overhead performa

dibandingkan komunikasi langsung di arsitektur monolitik.

Namun, inovasi dalam desain mikrokernel dan hardware

modern telah banyak mengurangi overhead ini.

b. Contoh sistem operasi yang menggunakan atau terinspirasi

mikrokernel antara lain QNX (digunakan di otomotif dan

industri), MINIX, dan sebagian dari arsitektur macOS (XNU

kernel adalah hybrid yang menggabungkan elemen

mikrokernel Mach dan kernel BSD monolitik).

Gambar 1.3

 19

B. Desain Berbasis Layanan (Service-Oriented OS)

Melanjutkan konsep modularitas dan isolasi yang diperkenalkan

oleh arsitektur mikrokernel, Desain Berbasis Layanan (Service-

Oriented OS - SOOS) memperluas gagasan bahwa fungsionalitas

sistem operasi harus disediakan sebagai kumpulan layanan yang

terdefinisi dengan baik. Dalam SOOS, komponen-komponen sistem

operasi (misalnya, manajemen file, manajemen device, keamanan,

networking) tidak lagi dilihat sebagai bagian integral dari kernel

monolitik yang tak terpisahkan, melainkan sebagai layanan

independen yang dapat diakses melalui antarmuka standar.

Konsep ini mirip dengan arsitektur microservices dalam

pengembangan aplikasi, di mana aplikasi besar dipecah menjadi

layanan-layanan kecil yang independen dan berkomunikasi melalui

API. Dalam konteks sistem operasi:

1. Abstraksi Fungsionalitas: Setiap layanan SO menawarkan

fungsionalitas spesifik melalui API yang terdefinisi,

menyembunyikan detail implementasi internal.

2. Isolasi Proses: Setiap layanan seringkali berjalan sebagai proses

atau thread terpisah, terisolasi dari layanan lain dan dari kernel

inti. Ini meningkatkan keamanan dan toleransi kesalahan. Jika

satu layanan crash, layanan lain tetap berfungsi dan sistem secara

keseluruhan tidak terganggu.

3. Komunikasi Melalui Pesan: Layanan-layanan ini berkomunikasi

satu sama lain dan dengan aplikasi melalui mekanisme message

passing atau panggilan prosedur jarak jauh (Remote Procedure

Call - RPC), mirip dengan IPC pada mikrokernel.

4. Skalabilitas Dinamis: Karena layanan-layanan bersifat

independen, beberapa instansi dari layanan yang sama dapat

dijalankan secara paralel untuk menangani beban kerja yang

 20

meningkat. Ini sangat relevan dalam lingkungan cloud atau

terdistribusi.

5. Kemudahan Pemeliharaan dan Pembaruan: Layanan dapat

diperbarui, diganti, atau ditambahkan tanpa memengaruhi layanan

lain atau memerlukan reboot sistem. Ini mempercepat siklus

pengembangan dan deployment.

6. Manfaat Desain Berbasis Layanan:

7. Peningkatan Keandalan: Isolasi layanan meminimalkan dampak

kegagalan.

8. Keamanan yang Ditingkatkan: Permukaan serangan diperkecil

karena layanan memiliki privilege yang minimal dan hanya

berinteraksi melalui API yang terkontrol.

9. Fleksibilitas dan Kustomisasi: Memungkinkan pengembang untuk

memilih dan mencampur layanan yang berbeda, atau bahkan

mengembangkan layanan kustom, untuk memenuhi kebutuhan

spesifik.

10. Dukungan untuk Komputasi Terdistribusi: Desain berbasis

layanan secara inheren mendukung lingkungan terdistribusi, di

mana layanan dapat berjalan pada node yang berbeda dalam

jaringan.

Meskipun sedikit SO yang sepenuhnya service-oriented dari

awal, banyak SO modern mengadopsi prinsip-prinsip desain ini dalam

komponen-komponennya. Misalnya, dalam sistem operasi cloud,

berbagai fungsi pengelolaan virtual machine, jaringan virtual, dan

penyimpanan seringkali disediakan sebagai layanan terpisah.

 21

C. Pendekatan Container dan Virtualisasi

Salah satu inovasi paling transformatif dalam arsitektur sistem

operasi modern adalah kemampuan untuk menjalankan lingkungan

komputasi terisolasi di atas host SO. Ini diwujudkan melalui

virtualisasi dan kontainerisasi, yang keduanya bertujuan untuk

menyediakan isolasi dan efisiensi, tetapi dengan pendekatan yang

berbeda.

1. Konsep Virtualisasi: Virtualisasi memungkinkan satu perangkat

keras fisik (host machine) untuk menjalankan beberapa sistem

operasi virtual (guest operating systems), masing-masing

berfungsi seperti mesin fisik yang mandiri. Ini dicapai dengan

menggunakan lapisan perangkat lunak yang disebut hypervisor

(juga dikenal sebagai Virtual Machine Monitor - VMM).

Hypervisor bertanggung jawab untuk mengelola sumber daya

hardware dan mendistribusikannya ke masing-masing virtual

machine (VM).

2. Ada dua tipe utama hypervisor:

a. Hypervisor Tipe 1 (Bare-Metal Hypervisor): Langsung

berjalan di atas hardware fisik, tanpa memerlukan sistem

operasi host di bawahnya. Hypervisor ini memiliki kendali

langsung atas hardware, yang menghasilkan kinerja yang

sangat tinggi dan keamanan yang kuat. Contoh: VMware

ESXi, Microsoft Hyper-V, Citrix XenServer, KVM (pada

Linux).

b. Hypervisor Tipe 2 (Hosted Hypervisor): Berjalan sebagai

aplikasi di atas sistem operasi host yang sudah ada. Meskipun

lebih mudah dipasang dan digunakan untuk tujuan

pengembangan atau pengujian, kinerjanya sedikit lebih rendah

 22

karena harus melalui lapisan SO host. Contoh: VirtualBox,

VMware Workstation, VMware Fusion.

3. Setiap VM mencakup kernel sistem operasi guest yang lengkap,

pustaka sistem, dan aplikasi. Ini membuatnya sangat terisolasi,

tetapi juga memerlukan sumber daya yang signifikan untuk setiap

VM.

4. Konsep Kontainerisasi: Kontainer menawarkan bentuk virtualisasi

yang lebih ringan dan efisien. Berbeda dengan VM yang

memvirtualisasikan seluruh mesin (hardware dan OS), kontainer

memvirtualisasikan sistem operasi di tingkat proses. Artinya,

semua kontainer yang berjalan di satu host SO berbagi kernel host

yang sama, tetapi setiap kontainer memiliki ruang pengguna

terisolasi sendiri, termasuk sistem file yang terpisah, pustaka, dan

dependensi aplikasi.

5. Teknologi kontainer seperti Docker dan orkestrasi seperti

Kubernetes memanfaatkan fitur kernel Linux (seperti namespaces

untuk isolasi proses dan cgroups untuk alokasi sumber daya)

untuk mencapai isolasi ini.

Perbandingan Virtual Machine vs. Container:

Fitur Kunci Virtual Machine (VM) Container

Tingkat Isolasi
Tinggi (Virtualisasi

seluruh hardware)

Sedang (Virtualisasi OS di

tingkat proses)

Sumber Daya

Membutuhkan lebih

banyak sumber daya

(CPU, RAM, Disk)

Lebih ringan, berbagi

kernel host

Ukuran Image
Besar (termasuk OS

guest lengkap)

Kecil (hanya aplikasi dan

dependensinya)

 23

Waktu Booting
Lebih lama (mem-boot

OS guest)

Sangat cepat (hanya

memulai proses aplikasi)

Portabilitas
Sangat portabel antar

hypervisor

Sangat portabel antar host

dengan kernel yang

kompatibel

Ketergantungan

Masing-masing VM

memiliki kernel OS

sendiri

Berbagi kernel OS host

Kasus

Penggunaan

Menjalankan OS yang

berbeda, isolasi ketat,

pengujian

Pengembangan,

deployment microservices,

CI/CD, skalabilitas cepat

Gambar 1.4

 24

D. Sistem Operasi Real-Time dan Embedded

Selain sistem operasi umum untuk desktop dan server, ada

kategori khusus yang dirancang untuk kebutuhan sangat spesifik:

Sistem Operasi Real-Time dan Sistem Operasi Embedded.

1. Sistem Operasi Real-Time (RTOS): RTOS adalah jenis sistem

operasi yang dirancang untuk menjamin respons terhadap

peristiwa eksternal dalam batasan waktu yang ketat dan dapat

diprediksi. Berbeda dengan SO umum yang mengutamakan

throughput atau keadilan pembagian waktu CPU, RTOS

memprioritaskan timeliness dan determinism.

a. Hard Real-Time System: Memiliki batasan waktu yang sangat

ketat dan mutlak. Kegagalan memenuhi tenggat waktu dapat

menyebabkan kegagalan sistem yang katastropal (misalnya,

sistem kontrol penerbangan, perangkat medis pendukung

kehidupan).

b. Soft Real-Time System: Memiliki tenggat waktu yang penting

tetapi kegagalan sesekali untuk memenuhinya tidak

menyebabkan bencana total, hanya penurunan kualitas

layanan (misalnya, sistem streaming video, sistem kontrol

game).

2. Karakteristik RTOS:

a. Penjadwalan Preemtif Prioritas Tinggi: Memberikan prioritas

tertinggi pada tugas real-time dan memungkinkannya untuk

menginterupsi tugas berprioritas lebih rendah kapan saja.

b. Latensi Rendah: Meminimalkan waktu yang dibutuhkan untuk

merespons interupsi dan beralih antar tugas.

c. Determinisme: Menjamin bahwa operasi akan diselesaikan

dalam jangka waktu yang dapat diprediksi, bahkan di bawah

beban tinggi.

 25

d. Ukuran Minimal: Seringkali dirancang untuk memiliki

footprint memori dan disk yang kecil.

3. Contoh RTOS meliputi QNX, VxWorks, FreeRTOS, dan RT-

Linux.

4. Sistem Operasi Embedded: SO embedded adalah sistem operasi

yang dirancang khusus untuk perangkat embedded—sistem

komputasi yang tertanam di dalam perangkat yang lebih besar dan

dirancang untuk satu atau beberapa fungsi spesifik. Perangkat ini

biasanya memiliki sumber daya komputasi yang terbatas (memori,

CPU, daya) dan seringkali tidak memiliki antarmuka pengguna

grafis tradisional.

5. Karakteristik SO Embedded:

a. Ukuran dan Footprint yang Sangat Kecil: Dioptimalkan untuk

memori dan penyimpanan terbatas.

b. Efisiensi Daya: Dirancang untuk beroperasi dengan konsumsi

daya minimal.

c. Kustomisasi Tinggi: Seringkali sangat disesuaikan dengan

hardware spesifik perangkat.

d. Keandalan dan Stabilitas: Penting untuk operasi jangka

panjang tanpa reboot.

e. Keamanan: Fitur keamanan yang dioptimalkan untuk

perangkat keras terbatas dan lingkungan IoT.

6. SO embedded dapat berupa RTOS (jika membutuhkan timeliness)

atau SO yang lebih umum yang dimodifikasi untuk lingkungan

embedded (misalnya, versi khusus Linux untuk IoT seperti

OpenWrt, atau Android embedded). Contoh perangkat yang

menggunakan SO embedded termasuk router nirkabel, peralatan

rumah tangga pintar, sistem otomotif, perangkat medis, dan sistem

kontrol industri.

 26

Gambar 1.5

 27

BAB 3: VIRTUALISASI DAN CLOUD

COMPUTING

Dalam era komputasi modern, virtualisasi dan cloud computing

bukan lagi sekadar jargon teknis, melainkan fondasi esensial yang

telah merevolusi cara sistem operasi (SO) berinteraksi dengan

perangkat keras dan bagaimana layanan komputasi disediakan. Kedua

paradigma ini memungkinkan efisiensi sumber daya yang belum

pernah ada sebelumnya, skalabilitas yang fleksibel untuk berbagai

kebutuhan, serta ketahanan sistem yang jauh lebih baik dibandingkan

model komputasi tradisional. Bab ini akan memandu pembaca untuk

memahami secara mendalam konsep dasar virtualisasi, menjelaskan

peran krusial hypervisor dalam memungkinkan fenomena ini, serta

secara komprehensif membandingkan dua pendekatan virtualisasi

yang paling dominan: virtual machine (VM) dan container.

Selanjutnya, kita akan menyelami bagaimana sistem operasi modern

beradaptasi dan berfungsi secara optimal dalam lingkungan virtual,

serta bagaimana mereka terintegrasi erat dengan platform cloud

computing. Bab ini akan diakhiri dengan eksplorasi model inovatif

Sistem Operasi sebagai Layanan (OSaaS) yang semakin populer.

A. Konsep Virtualisasi

Virtualisasi adalah sebuah konsep transformatif dalam ilmu

komputer yang melibatkan penciptaan representasi virtual, bukan

fisik, dari sebuah sumber daya komputasi. Bayangkan sebuah

komputer fisik tunggal yang dapat berperilaku seperti beberapa

komputer yang terpisah secara independen. Itulah esensi virtualisasi.

Ini memungkinkan berbagai sistem operasi, aplikasi, dan konfigurasi

 28

lingkungan untuk berjalan secara bersamaan di atas satu set perangkat

keras fisik yang sama, memaksimalkan utilisasi sumber daya dan

mengurangi biaya infrastruktur.

1. Tujuan utama virtualisasi meliputi:

2. Konsolidasi Sumber Daya: Mengurangi jumlah server fisik yang

dibutuhkan, yang berarti penghematan biaya hardware, energi

(listrik dan pendinginan), serta ruang data center.

3. Isolasi: Setiap lingkungan virtual (VM atau container) terisolasi

dari yang lain, sehingga masalah atau crash pada satu lingkungan

tidak akan mempengaruhi yang lain.

4. Fleksibilitas: Memungkinkan deployment dan manajemen

lingkungan komputasi yang lebih cepat dan mudah.

5. Portabilitas: Lingkungan virtual dapat dengan mudah dipindahkan

antar server fisik yang berbeda.

6. Hypervisor (Type 1 & Type 2): Sang Arsitek Virtualisasi

7. Inti dari teknologi virtualisasi adalah hypervisor, sering juga

disebut Virtual Machine Monitor (VMM). Hypervisor adalah

lapisan perangkat lunak, firmware, atau hardware yang

bertanggung jawab untuk menciptakan dan menjalankan virtual

machine. Ini adalah "otak" di balik kemampuan untuk membagi

sumber daya fisik dan mendistribusikannya secara aman ke VM

yang berbeda.

8. Hypervisor Tipe 1 (Bare-Metal Hypervisor):

a. Cara Kerja: Hypervisor tipe ini diinstal langsung pada

perangkat keras fisik komputer, tanpa memerlukan sistem

operasi host terlebih dahulu. Ini berarti hypervisor memiliki

kontrol langsung dan penuh atas sumber daya hardware.

Analogi sederhananya adalah, jika perangkat keras adalah

tanah kosong, maka hypervisor tipe 1 adalah kontraktor utama

 29

yang langsung membangun fondasi dan dinding-dinding

rumah virtual (VM) di atasnya.

b. Keunggulan: Karena berinteraksi langsung dengan hardware,

hypervisor Tipe 1 menawarkan kinerja yang sangat tinggi

(mendekati kinerja native), stabilitas yang superior, dan

keamanan yang lebih robust karena tidak ada lapisan SO host

yang dapat menjadi titik kerentanan tambahan. Mereka sangat

efisien dalam alokasi sumber daya.

c. Penerapan: Ini adalah pilihan dominan di lingkungan data

center skala besar, cloud computing publik, dan infrastruktur

server enterprise di mana kinerja dan keandalan adalah

prioritas utama.

d. Contoh: VMware ESXi, Microsoft Hyper-V, Citrix XenServer,

dan KVM (Kernel-based Virtual Machine, yang merupakan

bagian dari kernel Linux dan mengubah Linux menjadi

hypervisor Tipe 1).

9. Hypervisor Tipe 2 (Hosted Hypervisor):

a. Cara Kerja: Berbeda dengan Tipe 1, hypervisor Tipe 2 berjalan

sebagai aplikasi perangkat lunak biasa di atas sistem operasi

host yang sudah ada (misalnya, Windows, macOS, atau

Linux). SO host inilah yang bertanggung jawab untuk

mengelola hardware fisik, dan hypervisor Tipe 2 kemudian

mengalokasikan sumber daya virtual dari host ke mesin

virtual. Menggunakan analogi sebelumnya, jika hardware

adalah tanah kosong dan SO host adalah rumah yang sudah

dibangun, maka hypervisor tipe 2 adalah sebuah ruangan

khusus di dalam rumah tersebut yang kemudian dibagi lagi

menjadi "ruang-ruang virtual" (VM).

 30

b. Keunggulan: Lebih mudah dipasang dan digunakan untuk

tujuan pengembangan, pengujian software, atau penggunaan

pribadi di mana pengguna ingin menjalankan beberapa SO di

PC mereka tanpa mengubah konfigurasi boot utama. Fleksibel

karena dapat memanfaatkan fitur-fitur SO host.

c. Kekurangan: Kinerja cenderung sedikit lebih rendah

dibandingkan Tipe 1 karena adanya lapisan SO host yang

menjadi perantara antara hypervisor dan hardware fisik.

Keamanan juga sedikit lebih rentan karena ketergantungan

pada keamanan SO host.

d. Contoh: VirtualBox, VMware Workstation, VMware Fusion.

10. Virtual Machine (VM) vs. Container: Dua Pendekatan Isolasi

yang Berbeda

11. Meskipun VM dan container sama-sama bertujuan untuk

menyediakan lingkungan terisolasi untuk aplikasi, mereka

melakukannya dengan cara yang fundamental berbeda di tingkat

arsitektur. Pemahaman perbedaan ini sangat penting dalam

memilih teknologi yang tepat untuk kebutuhan spesifik.

12. Virtual Machine (VM): Virtualisasi Tingkat Hardware Penuh

a. Definisi: VM adalah emulasi lengkap dari sebuah komputer

fisik. Setiap VM bertindak seperti komputer mandiri dengan

komponen hardware virtualnya sendiri (CPU virtual, RAM

virtual, disk virtual, network adapter virtual).

b. Struktur: Di dalam setiap VM, terdapat sistem operasi guest

yang lengkap (termasuk kernel, pustaka sistem, dan

dependensi lainnya) yang berjalan di atas hardware virtual

yang disediakan oleh hypervisor. Di atas SO guest inilah

aplikasi diinstal.

 31

c. Isolasi: VM menawarkan tingkat isolasi yang sangat kuat.

Karena setiap VM memiliki kernel SO-nya sendiri dan sumber

daya virtual yang dialokasikan secara independen, masalah

atau bahkan malware di satu VM akan sangat sulit untuk

menyebar ke VM lain atau host. Ini seperti memiliki beberapa

komputer fisik yang terpisah di dalam satu kotak.

d. Konsumsi Sumber Daya: VM cenderung membutuhkan

sumber daya yang lebih besar (CPU, RAM, disk space) karena

setiap VM harus memuat seluruh instance SO guest dari nol.

e. Waktu Booting: Waktu yang dibutuhkan untuk memulai VM

lebih lama karena proses booting SO guest harus diselesaikan.

f. Portabilitas: VM sangat portabel antar hypervisor yang

kompatibel, memungkinkan migrasi lingkungan aplikasi yang

mulus.

g. Kasus Penggunaan Ideal: Menjalankan sistem operasi yang

berbeda pada satu hardware fisik (misalnya, Windows di

Linux), pengujian software di lingkungan yang terisolasi

sepenuhnya, konsolidasi server yang membutuhkan isolasi

maksimum.

13. Container: Virtualisasi Tingkat Sistem Operasi (Ringan)

a. Definisi: Kontainer adalah bentuk virtualisasi yang lebih

ringan dan efisien yang beroperasi pada tingkat sistem operasi.

Ini memungkinkan banyak "lingkungan terisolasi" untuk

berjalan di atas satu host SO yang sama.

b. Struktur: Semua kontainer yang berjalan pada satu host

berbagi kernel host SO yang sama. Setiap kontainer hanya

berisi aplikasi dan dependensinya (pustaka, runtime,

configuration files) yang diperlukan untuk menjalankan

aplikasi tersebut, tanpa kernel SO guest yang terpisah.

 32

c. Isolasi: Meskipun berbagi kernel host, kontainer

menggunakan fitur-fitur kernel SO host seperti namespaces

(untuk mengisolasi proses, network interface, mount points)

dan cgroups (control groups untuk mengalokasikan dan

membatasi sumber daya CPU, memori, I/O) untuk

menciptakan lingkungan yang terisolasi. Isolasi ini kuat untuk

sebagian besar kasus, tetapi secara teoritis sedikit kurang ketat

dibandingkan VM karena berbagi kernel.

d. Konsumsi Sumber Daya: Kontainer jauh lebih ringan dan

membutuhkan lebih sedikit sumber daya dibandingkan VM.

Mereka tidak perlu mengalokasikan RAM atau CPU untuk

kernel SO guest yang terpisah.

e. Waktu Booting: Kontainer sangat cepat untuk di-boot (hanya

dalam hitungan detik) karena mereka tidak perlu melalui

proses booting SO penuh, hanya memulai proses aplikasi.

f. Portabilitas: Kontainer sangat portabel antar host yang

memiliki kernel SO yang kompatibel dan container runtime

yang sama (misalnya, Docker).

g. Kasus Penggunaan Ideal: Pengembangan dan deployment

microservices, Continuous Integration/Continuous

Deployment (CI/CD), serverless computing, dan aplikasi yang

membutuhkan skalabilitas cepat.

Fitur Kunci Virtual Machine (VM) Container

Lapisan

Virtualisasi

Di atas hardware (oleh

hypervisor)

Di atas SO host (oleh

container runtime)

Isolasi
Tinggi (setiap VM

memiliki kernel OS

Sedang (berbagi kernel OS

host)

 33

sendiri)

Konsumsi

Sumber Daya

Membutuhkan lebih

banyak (duplikasi OS

kernel)

Lebih ringan (berbagi kernel

OS host)

Ukuran Image
Besar (GBs, termasuk

OS guest lengkap)

Kecil (MBs, hanya aplikasi

dan dependensinya)

Waktu Booting
Lebih lama (mem-boot

OS guest penuh)

Sangat cepat (hanya

memulai proses aplikasi)

Portabilitas
Antar hypervisor yang

kompatibel

Antar host dengan kernel

OS yang kompatibel

Dependensi

Masing-masing VM

memiliki kernel OS

sendiri

Berbagi kernel OS host

Kasus

Penggunaan

Menjalankan OS yang

berbeda, isolasi ketat,

legacy apps

Microservices, CI/CD,

skalabilitas cepat,

pengembangan agnostik OS

 34

Gambar 1.6 *(Deskripsi Gambar: Dua diagram berdampingan.

Diagram pertama berjudul "Arsitektur Virtual Machine (VM)".

Tunjukkan lapisan "Hardware" di paling bawah. Di atas Hardware,

gambarlah "Hypervisor" (misalnya VMware ESXi, Hyper-V). Di atas

Hypervisor, gambarlah beberapa blok terpisah, masing-masing

berlabel "Virtual Machine". Di dalam setiap blok Virtual Machine,

tunjukkan "Guest OS (Kernel, Pustaka)" dan di atasnya "Aplikasi".

Gunakan panah untuk menunjukkan bahwa Hypervisor mengelola

Hardware.

Diagram kedua berjudul "Arsitektur Kontainer". Tunjukkan

lapisan "Hardware" di paling bawah. Di atas Hardware, gambarlah

"Host OS (dengan Kernel)" (misalnya Linux Kernel). Di atas Host

OS, gambarlah lapisan "Container Runtime" (misalnya Docker

Daemon). Di atas Container Runtime, gambarlah beberapa blok

terpisah, masing-masing berlabel "Container". Di dalam setiap blok

Container, tunjukkan hanya "Aplikasi" dan "Pustaka/Dependencies"

mereka, tanpa Guest OS terpisah. Gunakan panah untuk menunjukkan

bahwa Container Runtime berinteraksi dengan Host OS Kernel.

B. Sistem Operasi dalam Lingkungan Virtual

Ketika sebuah sistem operasi berjalan di dalam sebuah

lingkungan virtual, ia menjadi "tamu" (guest) di atas infrastruktur

yang dikelola oleh hypervisor. Adaptasi ini mengubah banyak aspek

dari bagaimana SO berinteraksi dengan hardware dan bagaimana ia

dikelola.

Optimasi untuk Lingkungan Virtual: SO modern dirancang

untuk mengenali dan beradaptasi dengan lingkungan virtual. Vendor

hypervisor menyediakan "alat integrasi" (misalnya, VMware Tools

untuk VMware, Hyper-V Integration Services untuk Microsoft

 35

Hyper-V) yang diinstal di dalam SO guest. Alat-alat ini berisi driver

yang disebut driver paravirtualisasi (pv-driver). Driver ini

memungkinkan SO guest untuk berkomunikasi lebih efisien dengan

hypervisor daripada mencoba berinteraksi langsung dengan hardware

fisik yang divirtualisasi. Ini mengurangi overhead dan meningkatkan

kinerja I/O (disk, jaringan) serta manajemen CPU. Tanpa driver ini,

SO guest mungkin harus menggunakan emulasi hardware yang lebih

lambat.

1. Manajemen Sumber Daya Virtual:

a. CPU: Hypervisor mengalokasikan siklus CPU dari prosesor

fisik ke setiap VM. Meskipun SO guest "melihat" sejumlah

inti CPU virtual, hypervisor adalah yang bertanggung jawab

untuk menjadwalkan kapan instruksi dari VM tersebut benar-

benar dieksekusi pada inti fisik. Teknik seperti CPU

overcommitment memungkinkan penyedia cloud

mengalokasikan lebih banyak inti CPU virtual daripada yang

ada secara fisik, dengan asumsi bahwa tidak semua VM akan

menggunakan 100% CPU secara bersamaan.

b. Memori: Hypervisor mengelola alokasi memori fisik ke VM.

Teknik seperti memory ballooning memungkinkan hypervisor

untuk merebut kembali memori yang tidak digunakan dari VM

yang sedang berjalan dan mengalokasikannya ke VM lain

yang membutuhkan. SO guest akan "berpikir" memorinya

berkurang dan akan melakukan swapping ke disk virtualnya,

yang kemudian diatur oleh hypervisor. Ada juga teknik seperti

memory deduplication (juga dikenal sebagai page sharing) di

mana hypervisor dapat mengidentifikasi halaman memori

yang identik di beberapa VM dan menyimpannya hanya sekali

di RAM fisik, menghemat ruang.

 36

c. I/O: Hypervisor mengintersep semua permintaan I/O dari SO

guest dan menerjemahkannya ke hardware fisik. Dengan

driver paravirtualisasi, komunikasi ini jauh lebih efisien

dibandingkan emulasi hardware tradisional.

2. Manfaat Operasional:

a. Snapshotting dan Cloning: Kemampuan untuk mengambil

snapshot (titik pemulihan) dari VM dan membuat clone

(salinan identik) dari VM sangat mempercepat

pengembangan, pengujian, dan deployment lingkungan.

b. Live Migration: SO guest dapat dipindahkan dari satu server

fisik ke server fisik lain tanpa downtime yang signifikan,

sebuah fitur krusial untuk pemeliharaan server tanpa

mengganggu layanan.

c. Fault Tolerance: Dalam beberapa konfigurasi hypervisor, VM

dapat secara otomatis di-restart atau di-failover ke host lain

jika host utamanya mengalami kegagalan, meningkatkan

ketersediaan layanan.

d. Resource Pooling: Sumber daya dari beberapa server fisik

dapat digabungkan menjadi satu "kolam" besar, dan VM dapat

dialokasikan dari kolam ini secara dinamis, meningkatkan

efisiensi dan fleksibilitas manajemen.

3. Tantangan: Meskipun banyak manfaat, ada tantangan dalam

menjalankan SO di lingkungan virtual, seperti overhead kinerja

(meskipun minimal dengan paravirtualisasi), kompleksitas

manajemen hypervisor sendiri, dan licensing SO yang perlu

disesuaikan untuk lingkungan virtual.

 37

C. Integrasi Sistem Operasi dengan Platform Cloud

Cloud computing pada dasarnya adalah perluasan dari

virtualisasi, di mana sumber daya komputasi (server, penyimpanan,

jaringan, SO) disediakan sebagai layanan melalui internet oleh

penyedia pihak ketiga (misalnya, AWS, Azure, Google Cloud). Sistem

operasi adalah jantung dari hampir setiap layanan cloud.

1. SO sebagai Komponen IaaS (Infrastructure as a Service): Di

lapisan IaaS, pengguna mendapatkan akses ke infrastruktur

komputasi virtual, yang paling sering berupa virtual machine

(VM) yang dapat dikonfigurasi. Pengguna memiliki kontrol penuh

atas sistem operasi yang diinstal di VM ini. Penyedia cloud

menawarkan berbagai "gambar" atau "template" SO (Amazon

Machine Images/AMI di AWS, Virtual Machine Images di

Azure/GCP) yang siap digunakan (misalnya, berbagai distribusi

Linux seperti Ubuntu, CentOS, Red Hat, atau versi Windows

Server). Pengguna bertanggung jawab untuk menginstal aplikasi,

mengkonfigurasi SO, dan melakukan patching serta update

keamanan pada SO di dalam VM mereka. Ini sangat mirip dengan

mengelola server fisik, tetapi dengan fleksibilitas dan skalabilitas

cloud.

2. SO sebagai Komponen PaaS (Platform as a Service): Pada lapisan

PaaS, penyedia cloud tidak hanya menyediakan infrastruktur dasar

tetapi juga lingkungan runtime lengkap yang diperlukan untuk

mengembangkan, menjalankan, dan mengelola aplikasi. Ini berarti

sistem operasi yang mendasari dan middleware (misalnya, web

server, database) sepenuhnya dikelola oleh penyedia cloud.

Pengembang hanya perlu fokus pada kode aplikasi mereka dan

menyebarkannya ke platform PaaS. Contohnya adalah Google

App Engine, Azure App Service, atau Heroku. Pengguna tidak

 38

perlu khawatir tentang sistem operasi di balik layanan ini.

Meskipun demikian, SO yang mendasarinya (seringkali Linux

atau Windows Server yang dioptimalkan) adalah tulang punggung

dari platform ini.

3. SO sebagai Komponen SaaS (Software as a Service): Di lapisan

SaaS, penyedia cloud mengelola seluruh stack aplikasi, mulai dari

hardware, sistem operasi, middleware, hingga aplikasi itu sendiri.

Pengguna hanya mengakses aplikasi melalui browser web atau

klien tipis (thin client). Contohnya adalah Microsoft 365, Google

Workspace, atau Salesforce. Pengguna sama sekali tidak perlu

berinteraksi atau mengelola sistem operasi yang menjalankan

layanan-layanan ini. Dari perspektif pengguna akhir, SO yang

mendasari tidak terlihat.

Otomatisasi dan Manajemen SO di Cloud: Integrasi SO dengan

platform cloud sangat bergantung pada otomatisasi. Penyedia cloud

menyediakan alat dan API untuk:

1. Provisioning: Membuat instance SO virtual dengan cepat.

2. Scaling: Otomatis menambah atau mengurangi jumlah instance

SO berdasarkan beban kerja.

3. Monitoring: Memantau kinerja dan kesehatan SO.

4. Patching dan Updating: Otomatisasi proses pembaruan keamanan

dan fitur SO.

5. Configuration Management: Mengelola konfigurasi SO secara

konsisten di seluruh instance (misalnya, dengan alat seperti

Ansible, Puppet, Chef). Konsep "Infrastruktur Immutabel"

(Immutable Infrastructure) menjadi populer di cloud, di mana

setelah sebuah instance VM atau container dengan SO di-deploy,

ia tidak pernah dimodifikasi. Jika ada pembaruan atau perubahan,

instance baru dengan versi SO yang telah diperbarui dibuat dan

 39

instance lama dihentikan. Ini meningkatkan konsistensi dan

mengurangi risiko "konfigurasi drift".

(Deskripsi Gambar: Diagram piramida atau tumpukan (stack) yang

menggambarkan model layanan cloud IaaS, PaaS, dan SaaS dari

bawah ke atas.

 Paling Bawah (IaaS): Lapisan "Physical Hardware", di atasnya

"Virtualization/Hypervisor", dan di atasnya "Operating System

(Dikelola Pengguna)". Di samping OS, tunjukkan "Aplikasi

Pengguna".

 Lapisan Tengah (PaaS): Di atas IaaS, tunjukkan "Operating

System", "Middleware", "Runtime" (semua ini Dikelola

Penyedia). Di atasnya, tunjukkan "Aplikasi Pengguna".

 Paling Atas (SaaS): Di atas PaaS, tunjukkan "Aplikasi" (Dikelola

Penyedia). Pengguna hanya berinteraksi dengan lapisan ini.

Gunakan panah untuk menunjukkan kontrol: di IaaS, pengguna

mengelola OS ke atas; di PaaS, pengguna mengelola aplikasi; di

SaaS, pengguna hanya mengonsumsi aplikasi. Beri label

"Dikelola Pengguna" dan "Dikelola Penyedia" pada setiap lapisan

yang relevan untuk memperjelas tanggung jawab.)*

Cloud computing adalah model pengiriman layanan komputasi

(termasuk server, penyimpanan, database, jaringan, software,

 40

analitik, dan intelijen) melalui internet ("awan") dengan model bayar

sesuai penggunaan. Sistem operasi adalah komponen fundamental

dari setiap lapisan cloud.

1. SO sebagai Bagian dari IaaS (Infrastructure as a Service): Di

lapisan IaaS, penyedia cloud menawarkan infrastruktur komputasi

virtual, termasuk virtual machine. Pengguna memilih sistem

operasi yang diinginkan (misalnya, berbagai distribusi Linux,

Windows Server) dari daftar image yang tersedia (Amazon

Machine Images di AWS, Virtual Machine Images di Azure/GCP)

dan menyebarkannya ke dalam lingkungan cloud mereka. Dalam

skenario ini, SO dipertimbangkan sebagai bagian dari

"infrastruktur" yang dikelola oleh pengguna, memberikan kontrol

penuh atas konfigurasi SO.

2. SO sebagai Bagian dari PaaS (Platform as a Service): Pada lapisan

PaaS, penyedia cloud tidak hanya menyediakan infrastruktur

tetapi juga lingkungan runtime untuk pengembangan dan

deployment aplikasi. Ini berarti SO dan middleware yang

mendasarinya sudah dikelola oleh penyedia cloud. Pengembang

hanya perlu fokus pada kode aplikasi mereka. Meskipun

pengguna tidak berinteraksi langsung dengan SO, SO yang

mendasarinya (misalnya, Linux atau Windows Server) adalah

fondasi bagi platform PaaS seperti Google App Engine, Azure

App Service, atau AWS Elastic Beanstalk.

3. SO sebagai Bagian dari SaaS (Software as a Service): Di lapisan

SaaS, penyedia cloud mengelola seluruh stack aplikasi, termasuk

SO, infrastruktur, dan aplikasi itu sendiri. Pengguna hanya

mengakses aplikasi melalui browser atau klien tipis (thin client).

Contohnya adalah Microsoft 365, Google Workspace, atau

 41

Salesforce. Pengguna tidak perlu khawatir tentang sistem operasi

yang menjalankan aplikasi ini.

4. Manajemen SO di Cloud: Integrasi SO dengan platform cloud

mencakup alat otomatisasi untuk provisioning, scaling,

monitoring, dan patching SO virtual. Cloud providers

menyediakan API dan layanan untuk mengelola siklus hidup SO,

memastikan keamanan, dan ketersediaan tinggi. Konsep

immutable infrastructure, di mana VM atau kontainer dengan SO

tidak pernah dimodifikasi setelah deployment tetapi diganti

dengan versi baru saat update, menjadi umum untuk

meningkatkan konsistensi dan keandalan.

D. Sistem Operasi sebagai Layanan (OSaaS)

Sistem Operasi sebagai Layanan (OSaaS) adalah sebuah evolusi

dari model cloud computing di mana akses ke lingkungan sistem

operasi, beserta aplikasi dan layanan terkait, disediakan dan dikelola

sepenuhnya sebagai layanan melalui internet. Berbeda dengan IaaS di

mana pengguna masih bertanggung jawab atas pengelolaan SO, atau

PaaS di mana SO tersembunyi di balik platform, OSaaS menawarkan

pengalaman di mana user tidak perlu memikirkan instalasi,

pembaruan, atau maintenance SO sama sekali.

1. Konsep dan Karakteristik: Dalam model OSaaS, pengguna

berlangganan layanan yang memungkinkan mereka untuk

mengakses dan menggunakan lingkungan desktop lengkap yang

berbasis cloud. SO dan aplikasi berjalan di server cloud, dan

pengguna berinteraksi melalui thin client (misalnya, browser web

atau aplikasi desktop ringan) yang hanya menampilkan stream

video dari desktop jarak jauh dan mengirimkan input (klik,

ketikan) kembali ke server.

 42

Karakteristik utama OSaaS meliputi:

a. Akses Anywhere, Anytime: Pengguna dapat mengakses

lingkungan SO mereka dari perangkat apa pun (laptop, tablet,

smartphone) dengan koneksi internet.

b. Manajemen oleh Penyedia: Instalasi, patching, update,

keamanan, dan backup SO sepenuhnya ditangani oleh

penyedia layanan. Ini mengurangi beban operasional bagi

pengguna atau organisasi.

c. Skalabilitas On-Demand: Sumber daya (CPU, RAM) untuk

lingkungan OSaaS dapat disekalakan secara dinamis oleh

penyedia sesuai kebutuhan pengguna.

d. Efisiensi Biaya: Pengguna tidak perlu membeli lisensi SO atau

hardware yang mahal, cukup membayar biaya berlangganan.

2. Contoh dan Penerapan: Salah satu contoh nyata OSaaS adalah

Windows 365 dari Microsoft, yang menyediakan "PC Awan"

(Cloud PC) yang dapat di-stream ke perangkat apa pun. Pengguna

dapat memiliki Windows desktop yang dipersonalisasi dan

aplikasi mereka tersedia secara instan dari cloud. Contoh lain

termasuk layanan desktop-as-a-service (DaaS) dari penyedia

cloud lainnya yang menawarkan lingkungan desktop virtual.

3. OSaaS sangat cocok untuk:

a. Pekerja remote atau hybrid yang membutuhkan akses

konsisten ke lingkungan kerja mereka dari berbagai lokasi dan

perangkat.

b. Institusi pendidikan yang ingin menyediakan lingkungan

komputasi standar untuk siswa.

c. Bisnis kecil dan menengah yang ingin mengurangi biaya TI

dan kompleksitas manajemen infrastruktur.

 43

d. Lingkungan dengan kebutuhan keamanan tinggi, di mana data

tidak pernah meninggalkan data center.

(Deskripsi Gambar: Dua diagram berdampingan. Diagram pertama

berjudul "Arsitektur Virtual Machine (VM)" menunjukkan lapisan

"Hardware" di paling bawah, di atasnya ada "Hypervisor". Di atas

Hypervisor ada beberapa blok "Virtual Machine", dan setiap blok VM

berisi "Guest OS" dan "Aplikasi". Diagram kedua berjudul

"Arsitektur Kontainer" menunjukkan lapisan "Hardware" di paling

bawah, di atasnya ada "Host OS (dengan Kernel)". Di atas Host OS

ada lapisan "Container Runtime" (misalnya Docker). Di atas

Container Runtime ada beberapa blok "Container", dan setiap blok

Container hanya berisi "Aplikasi" dan "Pustaka/Dependencies"

mereka, tanpa OS guest terpisah, semua berbagi kernel host.

Sertakan keterangan untuk setiap bagian diagram.)

 44

(Deskripsi Gambar: Diagram piramida atau tumpukan (stack) yang

menggambarkan model layanan cloud IaaS, PaaS, dan SaaS. Di

bagian paling bawah (IaaS) tunjukkan "Hardware", di atasnya

"Virtualisasi", dan di atasnya "OS (User-managed)". Di lapisan

tengah (PaaS) tunjukkan "OS", "Middleware", "Runtime" (Provider-

managed). Di lapisan paling atas (SaaS) tunjukkan "Aplikasi"

(Provider-managed). Gunakan ikon atau label untuk menunjukkan di

mana SO berinteraksi di setiap lapisan.)

(Deskripsi Gambar: Diagram yang menunjukkan seorang

"Pengguna" yang berinteraksi dengan "Perangkat

(Laptop/Tablet/Smartphone)" tipis. Dari perangkat tersebut, panah

mengarah ke "Internet/Cloud". Di dalam cloud, gambarlah "Server"

yang menjalankan "Sistem Operasi" dan "Aplikasi". Tunjukkan panah

dua arah antara perangkat pengguna dan server di cloud,

melambangkan streaming desktop dan input. Berikan keterangan

bahwa OS dan aplikasi "Dikelola oleh Penyedia Layanan".)

 45

BAB 4: SISTEM OPERASI MOBILE DAN

PERANGKAT RINGAN

Bab ini akan membahas secara mendalam mengenai sistem

operasi (OS) mobile dan karakteristik perangkat ringan yang

menggunakannya. Kita akan menjelajahi ciri khas OS mobile,

bagaimana mereka mengelola daya dan konektivitas, tantangan

fragmentasi dan keamanan yang dihadapi, serta perbandingan antara

dua OS mobile paling dominan: Android dan iOS.

A. Ciri Khas OS Mobile

Sistem operasi mobile dirancang dari awal dengan asumsi

batasan dan fitur unik yang tidak ditemukan pada SO desktop

tradisional. Ciri khas ini membentuk fundamental desain dan

fungsionalitasnya:

 Antarmuka Pengguna Berbasis Sentuhan (Touch-Centric UI): Ini

adalah perbedaan paling mencolok. OS mobile didesain untuk

interaksi langsung melalui layar sentuh multi-touch, bukan mouse

dan keyboard. Ini melibatkan elemen UI yang besar, gesture

intuitif (cubit untuk zoom, swipe untuk navigasi), dan keyboard

virtual.

 Optimalisasi Daya (Power Efficiency): Perangkat mobile sangat

bergantung pada baterai. Oleh karena itu, manajemen daya adalah

prioritas utama. OS mobile mengimplementasikan berbagai teknik

untuk menghemat baterai, seperti:

o Manajemen CPU Dinamis: Mengurangi frekuensi CPU atau

mematikannya saat tidak diperlukan.

 46

o Manajemen Memori Agresif: Menutup atau menangguhkan

aplikasi di latar belakang secara agresif untuk mengosongkan

RAM dan menghemat daya.

o Mode Tidur Dalam (Deep Sleep Modes): Memasuki mode

daya rendah ekstrem saat perangkat tidak aktif.

 Konektivitas Nirkabel yang Meluas: OS mobile dirancang untuk

selalu terhubung, mendukung berbagai teknologi nirkabel secara

native:

o Jaringan Seluler (2G/3G/4G/5G): Konektivitas data dan suara

di mana saja.

o Wi-Fi: Konektivitas kecepatan tinggi di area lokal.

o Bluetooth: Untuk pairing dengan perangkat wearable,

headphone, atau aksesoris lainnya.

o NFC (Near Field Communication): Untuk pembayaran

nirsentuh dan pertukaran data jarak dekat.

 Integrasi Sensor yang Mendalam: Perangkat mobile dilengkapi

dengan beragam sensor yang sangat terintegrasi dengan OS:

o Akselerometer dan Giroskop: Untuk mendeteksi orientasi

perangkat dan gerakan (misalnya, rotasi layar, gaming).

o GPS (Global Positioning System): Untuk layanan lokasi dan

navigasi.

o Sensor Cahaya Sekitar: Untuk menyesuaikan kecerahan layar

secara otomatis.

o Sensor Sidik Jari/Pengenalan Wajah: Untuk otentikasi

biometrik.

o Barometer, Kompas Magnetik, dll.: Untuk data lingkungan

tambahan.

 Manajemen Aplikasi dan Ekosistem Aplikasi: OS mobile

beroperasi dalam ekosistem aplikasi yang ketat dan terpusat (App

 47

Store, Google Play Store). OS menyediakan kerangka kerja untuk

instalasi, pembaruan, dan sandboxing aplikasi.

o Sandboxing: Setiap aplikasi berjalan dalam lingkungan

terisolasi untuk mencegahnya mengakses data atau fungsi

aplikasi lain tanpa izin eksplisit pengguna, serta melindungi

sistem inti.

o Model Izin (Permission Model): Pengguna secara granular

mengontrol izin yang diberikan kepada setiap aplikasi

(misalnya, akses kamera, kontak, lokasi).

 Ukuran Footprint yang Kecil dan Efisien: Mengingat keterbatasan

hardware perangkat mobile (RAM, penyimpanan), OS mobile

dirancang untuk memiliki footprint yang sangat kecil dan efisien

dalam penggunaan sumber daya.

 Fokus pada Pengalaman Pengguna (User Experience): Prioritas

tinggi pada responsivitas, smooth scrolling, dan transisi antarmuka

yang mulus untuk pengalaman pengguna yang menyenangkan.

 48

1. Ikon baterai yang sedang diisi atau indikator daya rendah,

menunjukkan pentingnya efisiensi energi.

2. Ikon konektivitas (Wi-Fi, 5G, Bluetooth) yang menyala.

3. Simbol sensor (misalnya, giroskop, lokasi GPS) di sekitar

perangkat mobile.

4. Tampilan prompt izin aplikasi (misalnya, "Izinkan aplikasi X

mengakses lokasi Anda?"). Semua elemen harus mengarah ke

smartphone atau tablet sebagai pusatnya.)*

B. Manajemen Daya dan Konektivitas

Daya tahan baterai dan konektivitas yang andal adalah dua

faktor penentu utama keberhasilan perangkat mobile. Sistem operasi

mobile memiliki mekanisme canggih untuk mengelola kedua aspek

ini secara optimal.

 Manajemen Daya Lanjut:

o Doze Mode (Android) / Low Power Mode (iOS): Ini adalah

fitur di mana OS secara cerdas menunda aktivitas aplikasi

latar belakang yang tidak penting ketika perangkat tidak

bergerak dan layar mati untuk jangka waktu tertentu.

Notifikasi jaringan, sinkronisasi, dan tugas background

lainnya digabungkan dan diproses secara periodik dalam

maintenance window singkat, lalu perangkat kembali tidur. Ini

secara drastis mengurangi konsumsi daya saat perangkat tidak

digunakan.

o App Standby (Android): Jika aplikasi tidak digunakan selama

beberapa waktu, OS akan menempatkannya dalam status

standby, membatasi aksesnya ke sumber daya jaringan dan

CPU. Aplikasi hanya akan aktif kembali saat pengguna

meluncurkannya.

 49

o Penjadwalan Tugas Bertenaga-Sadar: OS mengoptimalkan

penjadwalan proses dan layanan agar hardware (terutama

CPU dan radio) dapat memasuki mode daya rendah sesering

mungkin. Ini termasuk mengumpulkan tugas-tugas kecil

menjadi satu burst untuk meminimalkan waktu bangun dari

tidur.

o Optimasi Layar: Layar adalah salah satu komponen paling

haus daya. OS mobile secara aktif mengelola kecerahan

adaptif (berdasarkan sensor cahaya sekitar), timeout layar

otomatis, dan mode Always-On Display yang hemat daya

(terutama pada layar OLED).

o Manajemen Komponen Hardware: OS mengelola daya ke

komponen hardware lain seperti GPU, sensor, dan radio

nirkabel, mematikan atau menguranginya saat tidak aktif

digunakan.

 Manajemen Konektivitas yang Adaptif: SO mobile harus

memastikan konektivitas yang mulus dan efisien di berbagai jenis

jaringan.

o Peralihan Jaringan Otomatis: OS secara cerdas beralih antara

Wi-Fi dan jaringan seluler (misalnya, dari 4G ke 5G)

berdasarkan kekuatan sinyal, kecepatan, dan ketersediaan,

seringkali tanpa intervensi pengguna.

o Hotspot Seluler dan Tethering: Kemampuan untuk berbagi

koneksi internet perangkat mobile dengan perangkat lain

melalui Wi-Fi, Bluetooth, atau USB, yang sepenuhnya

dikelola oleh OS.

o Virtual Private Network (VPN) Support: OS menyediakan

dukungan native atau API untuk VPN, memungkinkan

 50

pengguna untuk membuat koneksi jaringan yang aman dan

terenkripsi.

o Optimasi Penggunaan Data: OS seringkali menyediakan fitur

untuk memantau penggunaan data seluler dan memungkinkan

pengguna untuk mengatur batas data atau membatasi

penggunaan data latar belakang untuk aplikasi tertentu.

o Bluetooth Low Energy (BLE): Dukungan untuk BLE

memungkinkan perangkat untuk terhubung dengan aksesori

seperti wearable dengan konsumsi daya yang sangat rendah,

memperluas ekosistem perangkat.

C. Fragmentasi dan Keamanan

Dua tantangan terbesar yang dihadapi oleh sistem operasi

mobile, terutama Android, adalah fragmentasi dan keamanan.

 Fragmentasi: Fragmentasi mengacu pada beragamnya versi OS,

ukuran layar, resolusi, spesifikasi hardware, dan modifikasi

software (kulit UI, aplikasi bloatware) yang ada dalam satu

ekosistem.

o Fragmentasi Android: Ini adalah masalah yang sangat

menonjol di Android. Ada banyak produsen perangkat yang

berbeda, dan masing-masing dapat memodifikasi Android

Open Source Project (AOSP) untuk perangkat mereka.

Akibatnya, pembaruan OS seringkali tertunda atau bahkan

tidak pernah sampai ke perangkat lama, menciptakan

ekosistem di mana banyak perangkat menjalankan versi

Android yang berbeda dan terkadang sudah usang. Hal ini

menyulitkan pengembang aplikasi untuk memastikan aplikasi

mereka berfungsi dengan baik di semua perangkat dan versi,

 51

serta menyulitkan pengguna untuk mendapatkan fitur dan

patch keamanan terbaru.

o Fragmentasi iOS: iOS memiliki tingkat fragmentasi yang

sangat rendah. Karena Apple mengontrol hardware dan

software, mereka dapat mendorong pembaruan OS ke hampir

semua perangkat iOS secara bersamaan dan konsisten. Ini

memastikan sebagian besar pengguna memiliki versi OS

terbaru dengan fitur dan keamanan terkini.

 Dampak Fragmentasi:

o Pengalaman Pengguna yang Tidak Konsisten: Fitur-fitur baru

OS mungkin tidak tersedia di semua perangkat.

o Pengembangan Aplikasi yang Lebih Sulit: Pengembang harus

menguji dan mendukung banyak versi OS dan konfigurasi

hardware.

o Risiko Keamanan yang Meningkat: Perangkat yang

menjalankan versi OS lama seringkali tidak menerima patch

keamanan, sehingga lebih rentan terhadap eksploitasi.

 Keamanan pada OS Mobile: Keamanan adalah aspek krusial

mengingat data sensitif yang disimpan dan diproses di perangkat

mobile. OS mobile modern memiliki berbagai mekanisme

keamanan:

o Sandboxing Aplikasi: Seperti yang disebutkan, setiap aplikasi

berjalan dalam lingkungan terisolasi, mencegah satu aplikasi

untuk mengakses atau merusak data aplikasi lain atau sistem

inti tanpa izin eksplisit.

o Model Izin yang Granular: Pengguna harus secara eksplisit

memberikan izin kepada aplikasi untuk mengakses hardware

atau data sensitif (kamera, mikrofon, lokasi, kontak). OS

mobile modern semakin memperketat kontrol izin ini.

 52

o Secure Boot: Proses booting diverifikasi secara kriptografis

dari firmware ke kernel hingga sistem file untuk memastikan

tidak ada malware yang mengubah komponen sistem saat

booting.

o Enkripsi Data Penuh (Full-Disk Encryption): Sebagian besar

perangkat mobile modern mengenkripsi seluruh penyimpanan

secara default, melindungi data bahkan jika perangkat dicuri.

o Pembaruan Keamanan Reguler: OS mobile secara rutin

menerima patch keamanan untuk mengatasi kerentanan yang

baru ditemukan. Namun, fragmentasi dapat menghambat

penyebaran patch ini di seluruh ekosistem.

o Hardware-Based Security: Pemanfaatan fitur keamanan

hardware seperti Trusted Platform Module (TPM) atau Secure

Enclave (di perangkat Apple) untuk menyimpan kunci

kriptografi atau data biometrik secara aman.

o Verifikasi Aplikasi: Baik Google Play Protect (Android)

maupun proses peninjauan App Store (iOS) bertujuan untuk

memindai aplikasi dari malware sebelum atau sesudah

diunduh oleh pengguna.

D. Perbandingan Android dan iOS

Android dan iOS adalah dua raksasa yang mendominasi pasar

sistem operasi mobile global. Meskipun keduanya menawarkan

fungsionalitas inti yang serupa (seperti multitasking, akses internet,

kamera, dll.), filosofi desain, model bisnis, dan ekosistem mereka

sangat berbeda, yang pada akhirnya membentuk pengalaman

pengguna yang berbeda pula. Memahami perbedaan fundamental ini

penting untuk mengapresiasi kekuatan dan kelemahan masing-masing

platform.

 53

Fitur Kunci Android iOS

Pengembang

Utama

Google (sebagian besar

open source)
Apple Inc. (proprietary)

Model

Bisnis

Berbasis lisensi open

source (AOSP) dengan

layanan Google Mobile

Services (GMS) sebagai

proprietary. Google

mendapatkan pendapatan

dari periklanan, layanan,

dan penjualan aplikasi.

Terintegrasi vertikal:

hardware (iPhone, iPad) dan

software (iOS) terikat. Apple

mendapatkan pendapatan dari

penjualan hardware dan

komisi App Store.

Filosofi

Desain

Terbuka & Fleksibel:

Menekankan

kustomisasi, pilihan

perangkat yang luas dari

berbagai produsen, dan

interoperabilitas.

Memberikan lebih

banyak kontrol kepada

pengguna.

Tertutup & Terintegrasi:

Menekankan kesederhanaan,

konsistensi, performa

optimal, dan keamanan

melalui kontrol ketat pada

ekosistem hardware dan

software.

Ekosistem

Perangkat

Sangat luas, dari puluhan

bahkan ratusan produsen

(Samsung, Xiaomi,

Oppo, dll.) dengan

rentang harga dan

spesifikasi yang sangat

beragam.

Terbatas pada perangkat yang

diproduksi Apple saja

(iPhone, iPad).

 54

Kustomisasi

UI

Tinggi. Pengguna dapat

mengubah launcher,

widget, icon pack,

keyboard, dan tema

secara ekstensif.

Produsen juga dapat

membuat skin UI kustom

(misalnya, Samsung One

UI, Xiaomi MIUI).

Rendah. Kustomisasi terbatas

pada wallpaper, penataan

icon, dan widget yang

disediakan. UI inti sangat

konsisten di semua perangkat

dan versi.

Distribusi

Aplikasi

Google Play Store:

Lebih terbuka.

Pengembang dapat

mengunggah aplikasi

relatif lebih mudah. Juga

mendukung sideloading

(instalasi aplikasi dari

luar toko resmi).

Apple App Store: Sangat

ketat. Semua aplikasi melalui

proses peninjauan yang ketat

dari Apple untuk kualitas,

keamanan, dan privasi.

Sideloading sangat dibatasi

(biasanya hanya untuk

pengembangan).

Fragmentasi

OS

Tinggi. Banyak versi

Android yang berbeda

beredar karena produsen

perangkat dan operator

telekomunikasi sering

menunda atau tidak

merilis pembaruan. Ini

menyulitkan developer

dan menjadi celah

keamanan.

Rendah. Apple memiliki

kontrol penuh atas hardware

dan software, memungkinkan

pembaruan OS dirilis secara

konsisten dan cepat ke

sebagian besar perangkat

yang didukung.

Pembaruan Tergantung produsen Dikontrol penuh oleh Apple.

 55

OS perangkat dan operator.

Seringkali lambat atau

tidak tersedia untuk

perangkat lama. Google

berupaya mengatasi ini

dengan Project Treble

dan Mainline.

Pembaruan biasanya dirilis

secara serentak ke semua

perangkat yang didukung,

memastikan pengguna

mendapatkan fitur dan patch

keamanan terbaru.

Keamanan

Mengandalkan

sandboxing, model izin,

Google Play Protect, dan

Secure Boot. Namun,

fragmentasi dapat

menimbulkan celah

keamanan karena

perangkat lama tidak

menerima patch. Risiko

malware sedikit lebih

tinggi karena

keterbukaan platform.

Sangat kuat. Mengandalkan

sandboxing, model izin yang

ketat, Secure Enclave (untuk

biometrik/kriptografi), proses

peninjauan App Store yang

ketat. Risiko malware lebih

rendah karena ekosistem

yang terkontrol.

Integrasi

Ekosistem

Terintegrasi dengan

layanan Google (Gmail,

Maps, Drive, Photos)

dan hardware dari

berbagai produsen.

Interoperabilitas antar

brand bisa bervariasi.

Integrasi vertikal yang sangat

erat dengan hardware Apple

(iPhone, iPad, Mac, Apple

Watch, AirPods) dan layanan

Apple (iCloud, iMessage,

FaceTime). Menawarkan

pengalaman yang sangat

mulus antar perangkat Apple.

Asisten Google Assistant (sangat Siri (terintegrasi dengan

 56

Suara terintegrasi dengan

layanan Google dan

pengetahuan web).

ekosistem Apple, fokus pada

tugas-tugas perangkat).

Ketersediaan

Berbagai segmen pasar,

dari entry-level hingga

flagship.

Segmen pasar premium.

(Deskripsi Gambar: Dua screenshot berdampingan. Satu

menunjukkan Home Screen Android (bisa pilih stock Android seperti

Google Pixel, atau contoh UI populer seperti Samsung One UI untuk

menunjukkan kustomisasi) dengan widget, berbagai icon, dan

notification panel. Yang lainnya menunjukkan Home Screen iOS

dengan icon aplikasi yang rapi dalam grid, widget khas iOS, dan

Control Center atau Notification Center. Fokus pada perbedaan

visual antara kedua OS.)

 57

BAB 5. SISTEM OPERASI JARINGAN DAN

TERDISTRIBUSI

Dalam lanskap komputasi modern, interkoneksi perangkat

menjadi semakin vital. Sistem operasi tidak lagi beroperasi secara

terisolasi pada satu mesin, melainkan harus mampu berinteraksi dan

mengelola sumber daya yang tersebar di berbagai node dalam sebuah

jaringan. Bab ini akan membahas dua konsep fundamental dalam

domain ini: Sistem Operasi Jaringan (Network Operating System) dan

Sistem Operasi Terdistribusi (Distributed Operating System). Kita

akan mengeksplorasi perbedaan mendasar di antara keduanya,

menyelami bagaimana sumber daya dikelola dalam lingkungan

terdistribusi, serta meninjau contoh sistem operasi yang dirancang

khusus untuk memenuhi kebutuhan komputasi jaringan dan

terdistribusi, seperti Google Fuchsia dan Plan 9. Pemahaman terhadap

arsitektur ini krusial untuk menghadapi tantangan dan peluang dalam

era komputasi yang semakin terhubung.

A. Sistem Operasi Jaringan (Network Operating

System)

Sistem Operasi Jaringan (NOS) adalah jenis sistem operasi yang

dirancang khusus untuk mendukung komputer pribadi, workstation,

dan, yang paling utama, server agar dapat berfungsi dalam sebuah

jaringan. Tujuan utama NOS adalah untuk memungkinkan berbagai

komputer (klien) dalam jaringan untuk berbagi sumber daya

perangkat keras dan perangkat lunak yang tersebar di seluruh server

jaringan. NOS memfasilitasi komunikasi antar node dan menyediakan

layanan jaringan yang esensial.

 58

 Definisi dan Fungsi Utama: NOS adalah sistem operasi yang

menjalankan server dan memungkinkan client untuk berbagi file,

printer, aplikasi, dan sumber daya jaringan lainnya. NOS memiliki

kemampuan untuk mengenali dan merespons permintaan dari

berbagai pengguna di jaringan. Fungsi utamanya meliputi:

o Manajemen Sumber Daya Jaringan: Mengontrol akses ke

sumber daya bersama seperti file server, print server, dan

application server. NOS memastikan bahwa beberapa

pengguna dapat mengakses sumber daya ini secara bersamaan

tanpa konflik.

o Manajemen Pengguna dan Grup: Mengelola akun pengguna,

otentikasi (memverifikasi identitas pengguna), dan otorisasi

(menentukan hak akses pengguna terhadap sumber daya).

NOS memungkinkan administrator untuk membuat grup

pengguna dengan hak akses tertentu, menyederhanakan

manajemen keamanan.

o Keamanan Jaringan: Menerapkan kebijakan keamanan seperti

firewall, sistem deteksi intrusi, dan kontrol akses berbasis

peran (Role-Based Access Control/RBAC) untuk melindungi

data dan sumber daya dari akses tidak sah.

o Direktori Layanan: Menyediakan layanan direktori (misalnya,

Active Directory di Windows Server, LDAP di Linux) yang

menyimpan informasi tentang pengguna, komputer, dan

sumber daya jaringan, memudahkan pencarian dan

pengelolaan objek di jaringan.

o Dukungan Protokol Jaringan: Membangun dan mengelola

network stack yang mendukung berbagai protokol komunikasi

(TCP/IP, UDP, DNS, DHCP, SMB/CIFS, NFS),

memungkinkan interkonektivitas yang luas.

 59

o Manajemen Konfigurasi dan Pembaruan: Memungkinkan

administrator untuk mengelola konfigurasi jaringan dari satu

lokasi terpusat dan menyebarkan pembaruan atau patch ke

client dalam jaringan.

 Arsitektur Klien-Server: NOS umumnya beroperasi dalam model

arsitektur klien-server. Dalam model ini, server adalah komputer

kuat yang menjalankan NOS dan menyediakan layanan,

sementara klien adalah komputer pengguna yang mengakses

layanan tersebut.

o Server: Bertanggung jawab untuk menyimpan file, mengelola

database, menjalankan aplikasi bisnis, dan menangani

permintaan client.

o Klien: Mengirimkan permintaan ke server dan menampilkan

informasi yang diterima. Meskipun klien juga memiliki sistem

operasinya sendiri (misalnya, Windows 11, macOS), mereka

menggunakan layanan jaringan yang disediakan oleh NOS di

server.

 Contoh Sistem Operasi Jaringan:

o Windows Server: Seri sistem operasi server dari Microsoft

(misalnya, Windows Server 2019, 2022). Sangat populer di

lingkungan enterprise untuk Active Directory, file sharing,

web hosting (IIS), dan aplikasi bisnis berbasis Windows.

o Linux (misalnya, Ubuntu Server, Red Hat Enterprise Linux,

CentOS): Distribusi Linux sangat dominan di lingkungan

server untuk web server (Apache, Nginx), database server

(MySQL, PostgreSQL), file server (NFS, Samba), dan layanan

jaringan lainnya. Fleksibilitas, stabilitas, dan sifat open

source-nya menjadikannya pilihan utama.

 60

o Unix (misalnya, Solaris, HP-UX, AIX): Sistem operasi

enterprise yang robust, meskipun penggunaannya telah

menurun dibandingkan Linux.

(Deskripsi Gambar: Diagram yang menunjukkan beberapa

"Komputer Klien" (misalnya Laptop, Desktop) yang terhubung ke

sebuah "Jaringan" (misalnya ikon awan atau garis penghubung). Di

sisi lain Jaringan, ada sebuah "Server" besar yang berlabel "Server

dengan Network Operating System (NOS)". Tunjukkan panah dua

arah antara Klien dan Server melalui Jaringan, dengan label

"Permintaan Layanan" dari Klien ke Server dan "Respons

Layanan/Sumber Daya" dari Server ke Klien. Di dalam Server, bisa

ditunjukkan ikon atau label untuk "Shared Files", "Shared Printers",

"Applications" untuk menjelaskan sumber daya yang dibagi.)

 61

B. Sistem Operasi Terdistribusi (Distributed Operating

System)

Berbeda dengan Sistem Operasi Jaringan yang membedakan

secara jelas peran klien dan server, Sistem Operasi Terdistribusi

(DOS) mengambil konsep manajemen jaringan ke tingkat yang lebih

tinggi. DOS bertujuan untuk mengelola sekumpulan komputer yang

terhubung dalam sebuah jaringan sebagai satu sistem komputasi

tunggal yang kohesif. Dari sudut pandang pengguna, semua mesin ini

berfungsi seperti satu mesin tunggal, menyembunyikan kompleksitas

dari infrastruktur yang mendasarinya.

 Definisi dan Tujuan: Sistem Operasi Terdistribusi adalah

kumpulan prosesor independen yang saling berkomunikasi

melalui jaringan, dan dari perspektif pengguna, sistem ini tampak

sebagai satu komputer tunggal yang terpadu. Tujuan utamanya

adalah untuk menciptakan transparansi jaringan, di mana

pengguna tidak perlu tahu di mana sumber daya atau proses

sebenarnya berada atau dijalankan.

 Karakteristik Kunci DOS:

o Transparansi (Transparency): Ini adalah karakteristik paling

penting. DOS berusaha menyembunyikan sifat terdistribusi

dari pengguna. Berbagai jenis transparansi meliputi:

 Transparansi Lokasi: Pengguna tidak perlu tahu di mana

sumber daya (file, printer, proses) berada secara fisik di

jaringan.

 Transparansi Akses: Pengguna dapat mengakses sumber

daya di mana pun mereka berada di jaringan dengan cara

yang seragam.

 Transparansi Konkurensi: Banyak pengguna dapat berbagi

sumber daya tanpa intervensi.

 62

 Transparansi Kegagalan: Sistem dapat terus berfungsi

meskipun beberapa komponen mengalami kegagalan.

 Transparansi Replikasi: Jika suatu sumber daya direplikasi

untuk ketersediaan, pengguna tidak menyadarinya.

o Skalabilitas: Kemampuan untuk dengan mudah menambah

atau mengurangi node dalam sistem untuk mengakomodasi

beban kerja yang bervariasi tanpa mengganggu operasi.

o Konkurensi: Memungkinkan eksekusi paralel dari banyak

proses di berbagai node, meningkatkan throughput.

o Toleransi Kesalahan (Fault Tolerance): Dirancang untuk terus

beroperasi meskipun ada kegagalan sebagian pada node

tertentu, biasanya melalui replikasi data atau mekanisme

failover.

o Ketersediaan Tinggi (High Availability): Memastikan bahwa

layanan dan sumber daya selalu tersedia bagi pengguna.

o Keterbukaan (Openness): Kemampuan untuk dengan mudah

memperluas atau memodifikasi sistem, mendukung protokol

standar dan API yang memungkinkan komponen dari vendor

berbeda untuk berinteraksi.

 Perbedaan NOS vs. DOS: Seringkali terjadi kebingungan antara

NOS dan DOS. Perbedaan utamanya terletak pada tingkat

abstraksi dan transparansi yang ditawarkan.

o NOS: Pengguna sadar bahwa mereka mengakses sumber daya

di server terpisah (misalnya, "\server\shared_folder"). NOS

mengelola koneksi antara klien dan server.

o DOS: Pengguna melihat semua sumber daya sebagai bagian

dari satu sistem global (misalnya, mengakses file tanpa

mengetahui di server fisik mana file itu disimpan). DOS

 63

mengelola pool sumber daya yang terdistribusi seolah-olah itu

adalah satu pool tunggal.

C. Manajemen Sumber Daya Terdistribusi

Manajemen sumber daya dalam sistem operasi terdistribusi jauh

lebih kompleks daripada di sistem tunggal. DOS harus secara efisien

mengelola proses, memori, dan sistem file yang tersebar di banyak

node, sambil mempertahankan transparansi.

 Manajemen Proses Terdistribusi:

o Penjadwalan Tugas: DOS harus menentukan node mana yang

paling sesuai untuk menjalankan suatu proses atau tugas,

 64

berdasarkan ketersediaan sumber daya (CPU, memori), beban

jaringan, atau bahkan lokasi data.

o Migrasi Proses: Kemampuan untuk memindahkan proses yang

sedang berjalan dari satu node ke node lain (misalnya, untuk

load balancing atau toleransi kesalahan).

o Komunikasi Antarproses (IPC) Terdistribusi: Mekanisme

untuk proses yang berjalan di node berbeda dapat saling

berkomunikasi secara transparan (misalnya, melalui Remote

Procedure Call/RPC atau message passing).

o Sinkronisasi dan Koherensi: Memastikan bahwa peristiwa

yang terjadi di node berbeda disinkronkan dengan benar

(misalnya, menggunakan logical clocks atau vector clocks)

dan bahwa data yang dibagikan tetap konsisten di seluruh

sistem.

 Manajemen Memori Terdistribusi:

o Memori Bersama Terdistribusi (Distributed Shared

Memory/DSM): Sebuah abstraksi yang memungkinkan proses

di node berbeda untuk mengakses ruang alamat virtual

bersama, seolah-olah mereka berada di satu mesin. DOS

mengelola replikasi dan koherensi halaman memori di antara

node.

o Penukaran dan Paging Terdistribusi: Mekanisme untuk

mengelola penggunaan memori di seluruh sistem, termasuk

paging data ke atau dari penyimpanan terdistribusi.

 Sistem File Terdistribusi (Distributed File System/DFS): DFS

memungkinkan pengguna untuk mengakses file yang disimpan di

berbagai server jaringan seolah-olah file tersebut berada di

penyimpanan lokal. DFS bertanggung jawab untuk:

 65

o Transparansi Lokasi dan Akses: Pengguna tidak perlu tahu di

server mana file disimpan.

o Replikasi dan Caching: Mereplikasi file di beberapa lokasi

atau menyimpan cache di client untuk meningkatkan

ketersediaan dan kinerja.

o Koherensi Data: Memastikan bahwa semua salinan file yang

direplikasi tetap konsisten ketika ada perubahan.

o Toleransi Kegagalan: Jika satu server file gagal, file masih

dapat diakses dari replika lain.

o Contoh DFS termasuk NFS (Network File System),

SMB/CIFS (Server Message Block/Common Internet File

System), dan Google File System (GFS) yang digunakan

secara internal oleh Google.

 Algoritma Konsensus: Dalam sistem terdistribusi, mencapai

konsensus di antara node tentang suatu nilai atau status (misalnya,

siapa pemimpin, status transaksi) adalah tantangan besar.

Algoritma seperti Paxos atau Raft digunakan untuk memastikan

bahwa semua node setuju pada urutan operasi atau nilai tertentu,

bahkan jika ada kegagalan node atau jaringan. Ini krusial untuk

menjaga konsistensi data dan keandalan sistem.

D. Contoh OS Terdistribusi (Google Fuchsia, Plan 9)

Meskipun banyak sistem modern mengadopsi prinsip

terdistribusi (misalnya, cloud OS yang mendasari layanan cloud), ada

beberapa SO yang secara eksplisit dirancang dari awal sebagai sistem

operasi terdistribusi.

 Google Fuchsia:

o Filosofi: Fuchsia adalah sistem operasi open source yang

sedang dikembangkan oleh Google. Berbeda dengan Android

 66

atau Chrome OS yang berbasis kernel Linux, Fuchsia

dibangun di atas mikrokernel baru bernama Zircon. Desain

mikrokernel ini bertujuan untuk mencapai skalabilitas yang

lebih baik, keamanan yang lebih kuat, dan kemampuan untuk

beradaptasi dengan berbagai jenis perangkat keras, dari

perangkat IoT yang sangat kecil hingga smartphone, tablet,

laptop, dan bahkan desktop.

o Karakteristik Terdistribusi: Meskipun bukan DOS tradisional,

arsitektur modular Zircon dan fokusnya pada layanan

memungkinkan komponen sistem berinteraksi secara

terdistribusi. Tujuan jangka panjang Fuchsia adalah untuk

menjadi SO yang future-proof untuk dunia yang semakin

terhubung dan terdistribusi, di mana perangkat dapat bekerja

sama secara kohesif tanpa user perlu tahu di mana komputasi

terjadi. Ini mendukung konsep Ambient Computing Google.

o Penggunaan Saat Ini: Masih dalam tahap pengembangan aktif,

meskipun telah diterapkan pada beberapa perangkat smart

home Google (misalnya, Google Nest Hub generasi ke-2).

 Plan 9 from Bell Labs:

o Filosofi: Dikembangkan pada akhir 1980-an di Bell Labs (oleh

beberapa orang yang juga mengembangkan Unix), Plan 9

adalah eksperimen radikal dalam sistem operasi terdistribusi.

Filosofi intinya adalah "semuanya adalah file". Setiap sumber

daya dalam sistem (proses, jaringan, perangkat keras, bahkan

GUI) direpresentasikan sebagai file dalam sistem file hierarkis.

Pengguna mengakses dan mengelola sumber daya ini melalui

operasi file standar.

o Karakteristik Terdistribusi: Plan 9 secara intrinsik

terdistribusi. Pengguna dapat "me-mount" sistem file dari

 67

server mana pun ke client lokal, mengakses sumber daya jarak

jauh secara transparan. Ini memungkinkan komputasi grid

yang mulus dan berbagi sumber daya yang mudah di seluruh

jaringan.

o Fitur Utama:

 Protokol 9P: Protokol jaringan ringan yang digunakan

untuk semua komunikasi di Plan 9, yang didasarkan pada

konsep file ini.

 Per-User File System Namespace: Setiap pengguna

memiliki namespace sistem file unik yang dapat mereka

atur sendiri, menggabungkan sumber daya lokal dan jarak

jauh.

o Penggunaan: Meskipun tidak pernah mencapai popularitas

seperti Unix atau Linux, Plan 9 telah menjadi inspirasi penting

dalam penelitian sistem operasi terdistribusi dan cloud

computing. Konsepnya tentang "semuanya adalah file" dan

per-user namespace telah mempengaruhi desain sistem

modern lainnya.

 68

 69

BAB 6: KEAMANAN PADA SISTEM

OPERASI MODERN

Dalam lanskap komputasi yang semakin terhubung dan

kompleks, keamanan telah berevolusi dari sekadar fitur tambahan

menjadi pilar fundamental dalam desain dan operasional sistem

operasi modern. Ancaman siber yang terus berkembang, mulai dari

malware, ransomware, hingga serangan tingkat tinggi, menuntut

sistem operasi untuk tidak hanya mengelola sumber daya, tetapi juga

melindungi integritas, kerahasiaan, dan ketersediaan data serta sistem

itu sendiri. Bab ini akan menyelami berbagai model keamanan

modern yang diimplementasikan dalam SO, termasuk konsep

Mandatory Access Control (MAC) dengan studi kasus SELinux dan

AppArmor. Selanjutnya, akan dibahas mekanisme vital seperti isolasi

proses dan sandboxing, pentingnya enkripsi dan perlindungan data,

serta strategi update keamanan dan patch management yang proaktif.

Pemahaman mendalam tentang konsep-konsep ini sangat krusial bagi

siapa pun yang berinteraksi dengan teknologi informasi di era digital

ini.

A. Model Keamanan Modern (Mandatory Access

Control, SELinux, AppArmor)

Keamanan dalam sistem operasi tradisional seringkali

bergantung pada model Discretionary Access Control (DAC). Dalam

DAC, pemilik sumber daya (misalnya, file atau proses) memiliki

kebebasan untuk menentukan siapa yang dapat mengakses sumber

daya tersebut dan dengan izin apa (baca, tulis, eksekusi). Meskipun

fleksibel, DAC memiliki kelemahan serius: jika akun pengguna atau

aplikasi terkompromi, penyerang dapat mengubah izin untuk

 70

mengakses dan merusak sumber daya lain. Ini membuat sistem rentan

terhadap serangan privilege escalation atau penyebaran malware.

Sebagai respons, sistem operasi modern telah mengadopsi model

keamanan yang lebih kuat, salah satunya adalah Mandatory Access

Control (MAC).

 Mandatory Access Control (MAC): Filosofi Keamanan Pusat

Berbeda dengan DAC, dalam model MAC, kebijakan akses

ditentukan dan diberlakukan oleh sistem itu sendiri (kernel SO),

bukan oleh pemilik sumber daya atau pengguna. Administrator

sistem (atau kebijakan keamanan yang telah ditetapkan)

menentukan policy keamanan yang mengklasifikasikan setiap

subjek (proses, pengguna) dan objek (file, port, perangkat) dengan

label keamanan (security label). Akses hanya diberikan jika label

keamanan subjek memenuhi persyaratan label keamanan objek

sesuai dengan policy yang telah ditentukan. Kebijakan ini tidak

dapat diubah oleh pengguna atau aplikasi, bahkan jika mereka

memiliki privilege administratif.

Kelebihan MAC:

o Isolasi yang Kuat: Mencegah aplikasi atau pengguna yang

terkompromi untuk mengakses atau merusak bagian lain dari

sistem, bahkan jika mereka mendapatkan root privilege.

o Konsistensi Kebijakan: Kebijakan akses diterapkan secara

seragam di seluruh sistem, mengurangi risiko human error

atau konfigurasi yang salah.

o Pertahanan Mendalam: Menjadi lapisan pertahanan tambahan

di luar DAC, terutama efektif melawan zero-day exploits dan

malware yang mencoba menaikkan privilege.

Kekurangan MAC (dan Tantangannya):

o Kompleksitas Konfigurasi: Menerapkan dan mengelola

kebijakan MAC bisa sangat kompleks dan memerlukan

pemahaman mendalam tentang bagaimana sistem beroperasi.

 71

o Dapat Mengganggu Fungsionalitas: Konfigurasi yang terlalu

ketat dapat memblokir operasi yang sah, menyebabkan

aplikasi tidak berfungsi.

 SELinux (Security-Enhanced Linux): Implementasi MAC yang

Robust SELinux adalah mekanisme keamanan Mandatory Access

Control yang diimplementasikan sebagai modul kernel Linux. Ini

dikembangkan oleh National Security Agency (NSA) Amerika

Serikat dan dirilis sebagai open source. SELinux bekerja dengan

menambahkan atribut keamanan (security context) ke setiap objek

dalam sistem (file, proses, socket, dll.) dan setiap subjek (proses).

Kernel SELinux kemudian memeriksa security context ini

terhadap policy yang dimuat untuk menentukan apakah suatu

operasi diizinkan atau tidak.

Cara Kerja SELinux:

1. Setiap objek (misalnya, /var/www/html/index.php) memiliki

security context (misalnya,

system_u:object_r:httpd_sys_content_t:s0).

2. Setiap proses (misalnya, proses httpd) memiliki security

context (misalnya, system_u:system_r:httpd_t:s0).

3. Ketika proses httpd mencoba mengakses index.php, kernel

SELinux berkonsultasi dengan policy matrix untuk melihat

apakah proses dengan context httpd_t diizinkan untuk

membaca file dengan context httpd_sys_content_t.

4. Jika tidak diizinkan, akses akan ditolak, bahkan jika izin DAC

(misalnya, permission Unix) mengizinkannya.

SELinux dapat beroperasi dalam mode enforcing (menegakkan

kebijakan dan memblokir akses) atau permissive (mencatat

pelanggaran tanpa memblokir akses, berguna untuk

troubleshooting). Distribusi Linux seperti Red Hat Enterprise

 72

Linux (RHEL), Fedora, dan CentOS menggunakan SELinux

secara default.

 AppArmor: Alternatif MAC yang Lebih Sederhana AppArmor

(Application Armor) adalah mekanisme Mandatory Access

Control lain yang tersedia di Linux, dikembangkan oleh Novell.

Berbeda dengan SELinux yang berorientasi pada label keamanan

yang sangat granular, AppArmor lebih berorientasi pada jalur

(path) dan berbasis profil. Administrator membuat profil

keamanan untuk aplikasi tertentu yang menentukan sumber daya

(file, jaringan, kapabilitas kernel) apa yang boleh dan tidak boleh

diakses oleh aplikasi tersebut.

Cara Kerja AppArmor:

1. Administrator mendefinisikan "profil" untuk suatu aplikasi

(misalnya, web server Apache).

2. Profil ini berisi daftar eksplisit tentang file apa yang boleh

dibaca atau ditulis, port jaringan apa yang boleh dibuka, dan

kemampuan sistem apa yang boleh digunakan oleh aplikasi

tersebut.

3. Kernel AppArmor akan memblokir setiap upaya akses yang

dilakukan oleh aplikasi yang melanggar profilnya.

AppArmor sering dianggap lebih mudah untuk dikonfigurasi dan

dikelola dibandingkan SELinux, karena sifatnya yang lebih

ringkas dan berbasis path. Distribusi Linux seperti Ubuntu,

openSUSE, dan Debian menggunakan AppArmor secara default.

 73

1. Diagram DAC: Tunjukkan "Pengguna A" dan "Pengguna B".

Pengguna A memiliki "File X". Pengguna A memiliki panah ke

File X dengan label "Pemilik Mengatur Izin". Pengguna B

memiliki panah putus-putus ke File X dengan label "Akses Jika

Diizinkan Pemilik". Tekankan bahwa Pengguna A bisa mengubah

izin sesuka hati.

2. Diagram MAC: Tunjukkan "Pengguna A (Label Keamanan X)"

dan "Pengguna B (Label Keamanan Y)". Tunjukkan "File Z

(Label Keamanan P)". Sebuah kotak besar "Sistem Operasi

(Kernel/MAC Enforcement)" berada di antara Pengguna dan File.

Panah dari Pengguna ke Sistem Operasi, dan dari Sistem Operasi

ke File. Di tengah Sistem Operasi, tulis "Kebijakan Sistem".

Tekankan bahwa Sistem Operasi yang menentukan apakah

Pengguna dapat mengakses File berdasarkan Label Keamanan dan

Kebijakan, bukan pemilik File.)*

 74

B. Isolasi Proses dan Sandbox

Salah satu prinsip keamanan fundamental dalam sistem operasi

modern adalah isolasi. Tujuannya adalah untuk membatasi dampak

dari bug atau malware pada satu aplikasi atau proses agar tidak

menyebar dan merusak seluruh sistem. Dua mekanisme utama untuk

mencapai isolasi ini adalah isolasi proses dan sandboxing.

 Isolasi Proses: Setiap proses (misalnya, sebuah aplikasi yang

sedang berjalan) dalam sistem operasi modern dialokasikan

dengan ruang memori virtualnya sendiri yang terpisah dari proses

lain. Ini berarti satu proses tidak dapat secara langsung membaca

atau menulis ke ruang memori proses lain, kecuali melalui

mekanisme komunikasi antarproses (IPC) yang dikontrol.

Manfaat Isolasi Proses:

o Stabilitas Sistem: Jika satu aplikasi mengalami crash karena

bug atau kehabisan memori, itu tidak akan merusak proses lain

atau kernel sistem operasi. Hanya aplikasi tersebut yang

berhenti berfungsi.

o Keamanan: Mencegah satu aplikasi berbahaya untuk memata-

matai atau memanipulasi data dari aplikasi lain. Ini adalah

fondasi dari multi-tasking yang aman.

o Manajemen Sumber Daya: Memungkinkan SO untuk melacak

dan mengelola sumber daya (CPU, memori) yang digunakan

oleh setiap proses secara individu.

Mekanisme inti di balik isolasi proses adalah manajemen memori

virtual (MMU - Memory Management Unit) pada prosesor, yang

menerjemahkan alamat memori virtual yang dilihat oleh proses

menjadi alamat memori fisik yang sebenarnya, dan

memberlakukan batasan akses.

 Sandbox (Lingkungan Terpasir): Sandbox adalah mekanisme

keamanan yang lebih ketat dari isolasi proses, menciptakan

 75

lingkungan eksekusi yang sangat terisolasi untuk program.

Lingkungan ini memiliki batasan yang ketat mengenai sumber

daya apa yang dapat diakses oleh program, termasuk file, network

connection, dan hardware tertentu. Aplikasi di dalam sandbox

hanya dapat berinteraksi dengan sumber daya di luar sandbox

melalui API yang sangat terkontrol dan dengan izin eksplisit.

Cara Kerja Sandbox: Sebuah sandbox bekerja dengan

menempatkan program di dalam "kurungan" virtual yang

membatasi aksesnya ke sumber daya di luar batas yang diizinkan.

Ini sering dilakukan melalui:

o Virtualisasi Level Aplikasi: Menggunakan teknologi seperti

kontainer (containers) atau mesin virtual ringan.

o Mekanisme Kernel: SO membatasi panggilan sistem (system

calls) yang dapat dilakukan oleh proses di dalam sandbox.

o Kebijakan Keamanan: Aturan yang telah ditetapkan mengenai

file mana yang boleh diakses, port jaringan mana yang boleh

digunakan, atau perangkat hardware mana yang dapat diakses.

Penerapan Sandbox dalam SO Modern:

o Browser Web: Setiap tab atau extension di browser modern

(Chrome, Firefox, Edge) sering berjalan di sandbox terpisah.

Jika ada situs web berbahaya yang mencoba mengeksploitasi

browser, kerusakannya terbatas pada sandbox tab tersebut,

tidak dapat merusak seluruh sistem operasi.

o Aplikasi Mobile: Baik Android maupun iOS sangat

mengandalkan sandboxing untuk setiap aplikasi. Aplikasi

tidak dapat mengakses file atau data aplikasi lain tanpa izin

eksplisit yang diberikan oleh pengguna. Misalnya, aplikasi

game tidak bisa membaca kontak Anda tanpa persetujuan

Anda.

o Aplikasi Desktop: Beberapa aplikasi desktop modern

(misalnya, aplikasi yang diinstal dari Windows Store, atau

 76

aplikasi di macOS App Store) juga di-sandbox untuk

meningkatkan keamanan.

o Eksekusi Kode yang Tidak Dipercaya: Sandbox digunakan

untuk menjalankan kode yang tidak dipercaya (misalnya,

plugin pihak ketiga, skrip) di lingkungan yang aman,

mencegahnya melakukan tindakan berbahaya

Manfaat Sandbox:

 Perlindungan Terhadap Ancaman: Membatasi dampak

malware, exploit, atau kode berbahaya lainnya.

 Pengurangan Permukaan Serangan: Mengurangi area sistem

yang dapat diakses oleh kode yang tidak dipercaya.

 Perlindungan Privasi: Mencegah aplikasi mengakses data pribadi

tanpa izin pengguna.

 77

C. Enkripsi dan Perlindungan Data

Perlindungan data adalah aspek krusial keamanan sistem

operasi modern. Ini melibatkan penggunaan kriptografi untuk

menjaga kerahasiaan dan integritas data, baik saat data tersebut

disimpan (data at rest) maupun saat sedang ditransfer (data in transit).

 Enkripsi Data At Rest (Penyimpanan): Enkripsi data at rest adalah

praktik mengkodekan data yang disimpan di perangkat

penyimpanan (hard drive, SSD, flash drive) sehingga tidak dapat

dibaca oleh pihak yang tidak sah. Bahkan jika perangkat dicuri

atau diakses secara fisik, data tidak dapat diakses tanpa kunci

dekripsi yang benar.

o Enkripsi Disk Penuh (Full-Disk Encryption / FDE): Ini adalah

metode paling umum, di mana seluruh drive atau partisi

dienkripsi. SO mengelola proses enkripsi/dekripsi secara

transparan bagi pengguna setelah otentikasi awal (misalnya,

memasukkan password boot).

Contoh:

 BitLocker (Windows): Fitur FDE bawaan pada edisi

Windows Pro dan Enterprise.

 FileVault (macOS): Fitur FDE bawaan untuk perangkat

Apple.

 LUKS (Linux Unified Key Setup) / dm-crypt (Linux):

Standar untuk enkripsi disk di sebagian besar distribusi

Linux.

 Android/iOS Default Encryption: Sebagian besar

perangkat mobile modern mengenkripsi seluruh

penyimpanan secara default dan terikat pada otentikasi

fingerprint atau passcode pengguna.

 78

o Enkripsi File/Folder: Mengenkripsi file atau folder tertentu,

bukan seluruh drive. Ini berguna untuk melindungi data

sensitif di lingkungan multi-user atau share. Contoh:

Encrypting File System (EFS) di Windows.

 Enkripsi Data In Transit (Transfer Data): Enkripsi data in transit

melindungi data saat ditransfer melalui jaringan (misalnya,

internet, jaringan lokal). Tujuannya adalah untuk mencegah

eavesdropping (menguping) atau man-in-the-middle attacks.

o TLS/SSL (Transport Layer Security/Secure Sockets Layer):

Protokol kriptografi yang digunakan untuk mengamankan

komunikasi melalui jaringan komputer. Digunakan secara luas

untuk web Browse (HTTPS), email (SMTPS, IMAPS), dan

VPN. OS modern menyediakan stack jaringan yang

mendukung TLS/SSL secara native.

o VPN (Virtual Private Network): Membuat "terowongan"

terenkripsi melalui jaringan publik, memungkinkan pengguna

untuk mengirim dan menerima data secara aman seolah-olah

perangkat mereka terhubung langsung ke jaringan privat. OS

menyediakan klien VPN bawaan atau mendukung software

VPN pihak ketiga.

o SSH (Secure Shell): Protokol untuk akses jarak jauh yang

aman ke server dan untuk transfer file yang aman. SO modern

mendukung klien dan server SSH.

 Perlindungan Integritas Data: Selain kerahasiaan (enkripsi),

perlindungan data juga mencakup integritas, yaitu memastikan

data tidak dimodifikasi secara tidak sah. Ini sering dicapai

melalui:

o Hashing dan Digital Signatures: Menggunakan fungsi hash

kriptografi untuk menghasilkan nilai unik dari data, yang

 79

kemudian dapat diverifikasi menggunakan tanda tangan digital

untuk memastikan data tidak berubah. Digunakan dalam

pembaruan perangkat lunak, verifikasi file, dan boot aman.

o Journaling File Systems: Sistem file modern (misalnya, NTFS,

ext4, APFS) menggunakan journaling untuk mencatat

perubahan yang tertunda ke disk. Ini membantu memulihkan

sistem file ke keadaan konsisten setelah kegagalan daya atau

crash sistem, mencegah korupsi data.

D. Update Keamanan dan Patch Management

Salah satu lini pertahanan paling efektif dalam keamanan sistem

operasi modern adalah sistem update dan patch management yang

proaktif. Kerentanan (vulnerability) keamanan baru ditemukan secara

terus-menerus, dan malware serta penyerang dengan cepat

mengeksploitasi celah ini. Oleh karena itu, kemampuan sistem operasi

untuk secara rutin menerima dan menerapkan pembaruan sangat

penting.

 Pentingnya Pembaruan Keamanan:

o Menambal Kerentanan (Patching Vulnerabilities):

Pengembang SO secara aktif mencari dan memperbaiki bug

atau celah keamanan (exploit) yang dapat dimanfaatkan oleh

penyerang. Pembaruan ini, sering disebut patch, dirilis untuk

menutup celah tersebut.

o Melawan Ancaman Baru: Pembaruan juga dapat mencakup

peningkatan mekanisme keamanan untuk menghadapi jenis

serangan baru atau malware yang berkembang.

o Kepatuhan: Banyak standar keamanan dan regulasi (misalnya,

ISO 27001, HIPAA, GDPR) mensyaratkan patch management

yang efektif sebagai bagian dari upaya kepatuhan.

 80

 Mekanisme Pembaruan Otomatis OS: Sistem operasi modern

telah mengotomatiskan proses update sebisa mungkin untuk

memastikan pengguna dan administrator tetap terlindungi.

o Windows Update: Windows secara teratur merilis patch

keamanan dan pembaruan fitur. Windows 10 dan 11 secara

default mengaktifkan pembaruan otomatis, seringkali dengan

kemampuan untuk mengunduh di latar belakang dan

menginstal di luar jam kerja.

o Software Update (macOS): Apple juga menyediakan

pembaruan sistem secara rutin yang mencakup patch

keamanan dan peningkatan fitur, dengan opsi untuk instalasi

otomatis.

o Package Managers (Linux): Distribusi Linux menggunakan

package manager (misalnya, apt di Debian/Ubuntu, dnf di

Fedora/RHEL) untuk mengelola perangkat lunak dan

pembaruan sistem. Administrator atau pengguna dapat

menjalankan perintah untuk mengunduh dan menginstal patch

keamanan. Banyak sistem Linux server dikonfigurasi untuk

pembaruan keamanan otomatis.

o Pembaruan OTA (Over-The-Air) pada Mobile OS: Android

dan iOS secara rutin mengirimkan pembaruan OTA ke

perangkat mobile. Pembaruan ini mencakup patch keamanan,

perbaikan bug, dan fitur baru.

 Tantangan Fragmentasi (Android): Meskipun Google

merilis patch bulanan, penyebaran patch ke perangkat

pengguna akhir seringkali terhambat oleh produsen

perangkat dan operator, yang perlu menyesuaikan dan

menguji pembaruan sebelum mendistribusikannya. Ini

menciptakan "kesenjangan patch".

 81

 Keunggulan Kontrol (iOS): Apple memiliki kontrol

vertikal, sehingga patch keamanan iOS dapat menjangkau

sebagian besar perangkat yang didukung dengan sangat

cepat dan seragam.

 Patch Management: Patch management adalah proses sistematis

untuk mengidentifikasi, memperoleh, menguji, dan menyebarkan

patch perangkat lunak. Dalam lingkungan enterprise, ini

melibatkan strategi yang lebih kompleks untuk memastikan

pembaruan tidak mengganggu aplikasi kritis dan dikelola secara

terpusat.

o Pengujian: Sebelum patch diterapkan di lingkungan produksi,

mereka sering diuji di lingkungan staging untuk memastikan

tidak ada konflik atau regresi yang muncul.

o Rollback Options: SO modern sering menyediakan

kemampuan untuk rollback ke versi sebelumnya jika

pembaruan menyebabkan masalah serius.

o Vulnerability Disclosure dan CVE: Kerentanan keamanan

seringkali dicatat dalam Common Vulnerabilities and

Exposures (CVE) database, memberikan standar untuk

mengidentifikasi dan melacak kerentanan yang telah ditambal.

 82

1. Kotak "Peneliti Keamanan / Vendor SO": Dengan ikon kaca

pembesar (mencari kerentanan) dan ikon perisai (mengembangkan

patch). Panah keluar "Identifikasi Kerentanan & Buat Patch".

2. Panah ini mengarah ke Kotak "Server Pembaruan OS" (ikon

server dengan panah download). Panah keluar "Distribusi

Update".

3. Panah ini mengarah ke beberapa "Komputer/Perangkat Pengguna"

(ikon Laptop, Smartphone). Di setiap perangkat, tunjukkan ikon

"Instalasi Otomatis/Manual Update".

4. Hasil akhirnya adalah "Sistem yang Lebih Aman" (ikon gembok

terkunci atau perisai hijau). Bisa tambahkan panah melingkar dari

"Perangkat Pengguna" kembali ke "Peneliti/Vendor SO" dengan

label "Laporan Bug / Feedback".)*

 83

BAB 7: KONTROL VERSI, PEMBARUAN,

DAN AUTOMASI

Pengembangan dan pemeliharaan sistem operasi modern adalah

sebuah proses yang kompleks dan dinamis. Dengan jutaan baris kode

dan komponen yang saling terkait, diperlukan metodologi yang

canggih untuk mengelola perubahan, memastikan kualitas, dan

mendistribusikan pembaruan secara efisien. Bab ini akan membahas

tiga pilar penting dalam siklus hidup sistem operasi modern:

Continuous Integration dan Continuous Deployment (CI/CD) sebagai

praktik pengembangan perangkat lunak yang revolusioner; bagaimana

sistem operasi mengelola pembaruan otomatis untuk menjaga

keamanan dan fungsionalitas; serta pentingnya manajemen versi

kernel dan komponen OS untuk stabilitas dan evolusi sistem.

Pemahaman tentang otomatisasi dan praktik rekayasa perangkat lunak

ini akan memberikan wawasan tentang bagaimana SO tetap relevan

dan aman di tengah perkembangan teknologi yang cepat.

A. Continuous Integration dan Continuous Deployment

(CI/CD)

Continuous Integration (CI) dan Continuous Deployment (CD)

adalah praktik rekayasa perangkat lunak yang telah merevolusi cara

pengembangan dan pengiriman software, termasuk sistem operasi dan

komponennya. Tujuan utama CI/CD adalah untuk mempercepat

siklus release, meningkatkan kualitas kode, dan mengurangi risiko

kesalahan melalui otomatisasi yang ekstensif.

 Continuous Integration (CI): Integrasi Kode yang Berkelanjutan

CI adalah praktik di mana pengembang secara teratur

 84

mengintegrasikan perubahan kode mereka ke dalam repositori

pusat (mainline atau main branch) berkali-kali dalam sehari.

Setiap kali kode baru diintegrasikan, proses otomatis akan:

o Kompilasi Otomatis: Kode sumber dikompilasi untuk

memastikan tidak ada kesalahan sintaksis atau dependensi

yang hilang.

o Pengujian Otomatis: Berbagai jenis tes (misalnya, unit tests,

integration tests, static code analysis) dijalankan secara

otomatis untuk mendeteksi bug atau regresi sejak dini. Jika

ada tes yang gagal, pengembang akan segera diberitahu.

o Feedback Cepat: Pengembang mendapatkan feedback instan

mengenai kualitas dan fungsionalitas kode mereka. Ini

memungkinkan masalah diidentifikasi dan diperbaiki saat

masih kecil, jauh sebelum menjadi bug besar yang sulit

dilacak.

Manfaat CI bagi Pengembangan OS:

o Deteksi Bug Dini: Mencegah integrasi kode yang rusak ke

dalam mainline.

o Kualitas Kode yang Konsisten: Memastikan bahwa semua

kontribusi memenuhi standar kualitas.

o Kolaborasi Efisien: Memungkinkan banyak pengembang

untuk bekerja pada basis kode yang sama tanpa saling

mengganggu.

o Pengurangan "Integration Hell": Menghindari masalah besar

yang muncul ketika perubahan kode diintegrasikan sekaligus

setelah periode pengembangan yang panjang.

 Continuous Deployment (CD): Pengiriman Otomatis ke Produksi

CD adalah langkah selanjutnya setelah CI. Ini adalah praktik di

mana setiap perubahan kode yang berhasil melewati semua tahap

pengujian otomatis di CI akan secara otomatis dikirim (deployed)

 85

ke lingkungan produksi atau staging. Tujuannya adalah untuk

memastikan bahwa perangkat lunak selalu dalam kondisi yang

dapat di-deploy setiap saat.

Continuous Delivery vs. Continuous Deployment: Perlu dicatat

perbedaan antara Continuous Delivery dan Continuous

Deployment.

o Continuous Delivery: Mengotomatiskan semua langkah

hingga tahap deployment ke produksi, tetapi membutuhkan

persetujuan manual untuk actual release ke pengguna akhir.

o Continuous Deployment: Mengotomatiskan seluruh proses

dari komit kode hingga deployment ke produksi tanpa

intervensi manual, asalkan semua tes otomatis berhasil.

Manfaat CD bagi Sistem Operasi:

o Siklus Rilis Cepat: Pembaruan dan patch keamanan dapat

didistribusikan dengan sangat cepat setelah dikembangkan.

o Respon Cepat terhadap Ancaman: Kerentanan keamanan

dapat ditambal dan didistribusikan ke pengguna dalam

hitungan jam atau hari, bukan minggu atau bulan.

o Inovasi Berkelanjutan: Fitur baru dapat di-roll out secara

bertahap dan cepat, memungkinkan developer untuk

bereksperimen dan mendapatkan feedback lebih cepat.

o Mengurangi Human Error: Otomatisasi menghilangkan

banyak human error yang bisa terjadi dalam proses

deployment manual.

Meskipun Continuous Deployment penuh pada OS

consumer (seperti Windows atau macOS) mungkin jarang

dilakukan karena risikonya, prinsip-prinsip CD sangat diterapkan

pada komponen-komponen tertentu atau pada SO di lingkungan

cloud dan server yang highly-controlled. Contohnya, Google

 86

sering menggunakan CD untuk layanan internal mereka dan

beberapa server-side components Android.

1. Develop: (Ikon pengembang mengetik kode). Panah "Commit

Code".

2. Commit / Version Control: (Ikon Git/repositori kode). Panah

"Trigger Build".

3. Build: (Ikon server dengan roda gigi/ikon kompilasi). Panah "Run

Tests".

4. Test (CI): (Ikon server dengan tanda centang/X, atau ikon

mikroskop). Panah "Package Application".

5. Release/Package: (Ikon kotak hadiah/paket). Panah "Deploy to

Staging".

6. Deploy (CD): (Ikon server yang me-deploy ke cloud atau mesin).

Panah "Deploy to Production".

 87

7. Ulangi siklus ini. Tambahkan panah feedback dari "Test" kembali

ke "Develop" jika gagal.)*

B. Sistem Pembaruan Otomatis OS

Pembaruan perangkat lunak, terutama untuk sistem operasi,

sangat penting untuk menjaga keamanan, stabilitas, dan

fungsionalitas. Sistem operasi modern telah mengembangkan

mekanisme pembaruan otomatis yang canggih untuk

menyederhanakan proses ini bagi pengguna akhir dan memastikan

sistem tetap terlindungi dari ancaman baru.

 Pentingnya Pembaruan Otomatis:

o Keamanan Kritis: Kerentanan keamanan baru ditemukan

setiap hari. Pembaruan otomatis memastikan bahwa patch

keamanan kritikal dapat diterapkan dengan cepat tanpa

intervensi pengguna, menutup celah eksploitasi.

o Perbaikan Bug: Mengatasi bug dan masalah kinerja yang

ditemukan setelah release awal.

o Fitur Baru dan Peningkatan Performa: Memperkenalkan

fungsionalitas baru, kompatibilitas hardware yang lebih baik,

dan optimasi kinerja.

o Kepatuhan: Banyak lingkungan enterprise dan regulasi

memerlukan sistem untuk selalu diperbarui.

 Mekanisme Pembaruan pada Berbagai OS Modern:

o Windows Update: Ini adalah layanan bawaan Microsoft untuk

mendistribusikan pembaruan ke sistem Windows. Sejak

Windows 10, pembaruan otomatis diaktifkan secara default

dan sangat sulit untuk dimatikan sepenuhnya pada edisi

consumer. Pembaruan dibagi menjadi:

 88

 Quality Updates (Cumulative Updates): Pembaruan

bulanan yang mencakup patch keamanan, perbaikan bug,

dan peningkatan keandalan.

 Feature Updates: Pembaruan besar yang dirilis satu atau

dua kali setahun, membawa fitur baru, perubahan

antarmuka, dan peningkatan signifikan. Windows Update

seringkali mengunduh pembaruan di latar belakang dan

memerlukan restart perangkat. Fitur seperti "Jam Aktif"

(Active Hours) memungkinkan pengguna menentukan

kapan restart tidak boleh terjadi.

o Software Update (macOS): Apple mengelola pembaruan

macOS secara terpusat melalui fitur "Software Update" di

System Settings. Pembaruan ini mencakup perbaikan

keamanan dan fitur baru. macOS memiliki reputasi baik dalam

hal distribusi pembaruan yang cepat dan konsisten ke

perangkat yang didukung.

o Package Managers (Linux): Sebagian besar distribusi Linux

mengelola pembaruan melalui sistem package manager

(misalnya, APT di Debian/Ubuntu, DNF di Fedora/RHEL,

Pacman di Arch Linux). Meskipun sering memerlukan

perintah manual (e.g., sudo apt update && sudo apt upgrade),

banyak lingkungan desktop Linux menyediakan alat GUI

untuk pembaruan yang mudah. Untuk server, alat seperti

unattended-upgrades (Ubuntu) dapat mengotomatiskan patch

keamanan.

o Over-The-Air (OTA) Updates (Android & iOS): Sistem

operasi mobile sangat mengandalkan pembaruan OTA.

 iOS: Apple memiliki kendali penuh atas hardware dan

software, memungkinkan pembaruan iOS didistribusikan

 89

secara seragam dan cepat ke hampir semua perangkat yang

didukung. Pengguna menerima notifikasi dan dapat

mengunduh serta menginstal pembaruan langsung dari

perangkat.

 Android: Meskipun Google merilis pembaruan bulanan

untuk kernel Android, distribusi ke perangkat pengguna

akhir seringkali terhambat oleh produsen perangkat dan

operator seluler. Mereka perlu menyesuaikan dan menguji

pembaruan untuk perangkat keras spesifik mereka.

Inisiatif seperti Project Treble oleh Google bertujuan

untuk mengurangi fragmentasi dan mempercepat proses

pembaruan.

 Tantangan Pembaruan Otomatis:

o Kompatibilitas: Pembaruan terkadang dapat menyebabkan

masalah kompatibilitas dengan aplikasi atau driver lama.

o Ukuran dan Bandwidth: Pembaruan yang besar dapat

memakan banyak bandwidth dan ruang penyimpanan.

o Downtime: Beberapa pembaruan memerlukan restart,

menyebabkan downtime singkat.

o Kegagalan Pembaruan: Proses pembaruan yang gagal dapat

menyebabkan sistem tidak dapat di-boot. SO modern sering

memiliki mekanisme rollback untuk mengatasi hal ini.

C. Manajemen Versi Kernel dan Komponen OS

Manajemen versi adalah praktik fundamental dalam

pengembangan perangkat lunak untuk melacak dan mengontrol

perubahan pada kode. Dalam konteks sistem operasi, manajemen

versi kernel dan komponen OS lainnya sangat krusial untuk stabilitas,

keamanan, dan kemampuan debugging.

 90

 Pentingnya Manajemen Versi:

o Pelacakan Perubahan: Mencatat setiap perubahan yang dibuat

pada kode sumber, memungkinkan pengembang untuk melihat

riwayat perubahan, siapa yang membuat perubahan, dan

mengapa.

o Kolaborasi: Memfasilitasi kerja tim di mana banyak

pengembang dapat bekerja pada bagian kode yang sama

secara bersamaan tanpa saling menimpa pekerjaan.

o Kemampuan Rollback: Jika ada bug kritis atau masalah

performa yang diperkenalkan oleh perubahan baru, sistem

dapat dengan cepat dikembalikan (rollback) ke versi

sebelumnya yang stabil.

o Debugging dan Analisis: Memungkinkan pengembang untuk

mengidentifikasi dengan tepat perubahan mana yang

menyebabkan bug atau masalah tertentu, mempercepat proses

debugging.

o Reproduksibilitas: Memungkinkan pembangunan kembali

versi OS atau komponen tertentu di masa lalu, yang penting

untuk pengujian dan kepatuhan.

 Sistem Kontrol Versi (Version Control Systems - VCS):

Pengembang sistem operasi mengandalkan Sistem Kontrol Versi

(VCS) untuk mengelola kode sumber mereka. Alat VCS paling

populer saat ini adalah Git.

o Git: Digunakan secara ekstensif dalam pengembangan kernel

Linux, Android Open Source Project (AOSP), dan banyak

proyek open source lainnya. Git adalah VCS terdistribusi,

artinya setiap pengembang memiliki salinan lengkap dari

repositori kode, memungkinkan mereka bekerja secara offline

dan menyatukan perubahan mereka nanti. Ini memungkinkan

 91

model pengembangan yang sangat kolaboratif dan

terdistribusi.

o Fitur Git yang Relevan:

 Commits: Merekam perubahan pada kode.

 Branches: Memungkinkan pengembang untuk bekerja

pada fitur baru secara terpisah dari mainline tanpa

mengganggu kode yang stabil.

 Merges: Menggabungkan perubahan dari satu branch ke

branch lain.

 Tags: Menandai rilis stabil atau versi penting dari kode.

 Manajemen Versi Kernel: Kernel sistem operasi (misalnya, kernel

Linux) memiliki siklus rilis yang teratur dengan skema

penomoran versi yang jelas (misalnya, 5.15.0). Setiap versi mayor

membawa fitur baru yang signifikan, sementara versi minor

biasanya berfokus pada perbaikan bug dan patch keamanan.

Distribusi Linux, misalnya, memilih versi kernel tertentu dan

mengelolanya, memberikan stabilitas dan patch keamanan di atas

versi tersebut.

 Manajemen Versi Komponen OS: Selain kernel, sistem operasi

terdiri dari ribuan komponen lain (pustaka sistem, utilitas, device

driver, shell, aplikasi bawaan). Semua komponen ini juga

memiliki versi tersendiri yang harus dikelola dan disinkronkan

untuk memastikan kompatibilitas dan stabilitas sistem secara

keseluruhan. Dalam ekosistem open source, seringkali ada proses

yang terstruktur untuk mengelola kontribusi dari berbagai pihak

dan memastikan mereka terintegrasi dengan baik ke dalam release

OS.

 Dampak pada Stabilitas dan Keamanan: Manajemen versi yang

buruk dapat menyebabkan masalah serius, seperti bug yang sulit

 92

dilacak, ketidakstabilan sistem, atau bahkan celah keamanan yang

tidak sengaja diperkenalkan. Oleh karena itu, praktik terbaik

dalam manajemen versi, yang difasilitasi oleh alat seperti Git dan

metodologi CI/CD, adalah fondasi untuk membangun dan

memelihara sistem operasi yang robust dan aman.

(Deskripsi Gambar: Sebuah diagram yang menunjukkan "Repositori

Pusat (Central Repository)" (misalnya GitHub/GitLab ikon). Dari

Repositori Pusat, tunjukkan beberapa "Pengembang" (Developer 1,

Developer 2, Developer N) yang masing-masing memiliki "Repositori

Lokal" mereka sendiri. Tunjukkan panah "Clone" dari Repositori

Pusat ke Repositori Lokal, panah "Commit" dari Pengembang ke

Repositori Lokal, dan panah "Push" dari Repositori Lokal ke

Repositori Pusat. Juga, tunjukkan panah "Pull/Fetch" dari Repositori

Pusat ke Repositori Lokal. Ini menggambarkan bagaimana

pengembang berkolaborasi dan mengelola versi kode.)

 93

BAB 8: MASA DEPAN SISTEM OPERASI

Sistem operasi telah melalui evolusi yang luar biasa, dari

sekadar manajer sumber daya menjadi arsitek komputasi yang

kompleks dan adaptif. Namun, perjalanan inovasi tidak berhenti di

sini. Seiring dengan kemajuan pesat dalam kecerdasan buatan (AI),

pembelajaran mesin (ML), proliferasi perangkat Internet of Things

(IoT), dan kebutuhan akan pemrosesan data di edge, sistem operasi

terus beradaptasi dan berinovasi untuk memenuhi tuntutan era

komputasi berikutnya. Bab ini akan mengeksplorasi tren-tren kunci

yang akan membentuk masa depan sistem operasi, membahas

integrasi yang semakin mendalam dengan AI/ML, peran krusial SO

dalam ekosistem IoT dan edge computing, pentingnya model

pengembangan open source, serta tantangan dan peluang yang

menanti di cakrawala pengembangan SO.

A. Integrasi dengan AI dan Machine Learning

Kecerdasan Buatan (AI) dan Pembelajaran Mesin (ML) telah

menjadi kekuatan pendorong di berbagai bidang teknologi, dan sistem

operasi tidak terkecuali. Integrasi AI/ML ke dalam SO bukan hanya

tentang menjalankan aplikasi AI, tetapi juga tentang bagaimana

AI/ML dapat meningkatkan fungsionalitas inti dari SO itu sendiri,

menjadikannya lebih cerdas, adaptif, dan efisien.

 Optimalisasi Sumber Daya Adaptif: SO modern harus mengelola

sumber daya (CPU, memori, I/O, daya) secara efisien untuk

ribuan proses dan aplikasi yang berjalan secara bersamaan.

AI/ML dapat digunakan untuk:

 94

o Penjadwalan yang Cerdas: Model ML dapat mempelajari pola

penggunaan aplikasi dan perilaku pengguna untuk

memprediksi kebutuhan sumber daya di masa depan.

Misalnya, penjadwal CPU dapat memprioritaskan tugas-tugas

yang paling sering digunakan pengguna atau mengalokasikan

sumber daya ke aplikasi yang akan segera aktif, mengurangi

latensi dan meningkatkan responsivitas.

o Manajemen Daya Prediktif: AI dapat menganalisis data

penggunaan baterai dan aktivitas perangkat untuk

memprediksi kapan pengguna akan membutuhkan daya dan

secara adaptif menyesuaikan mode daya, mengoptimalkan

konsumsi energi tanpa mengorbankan pengalaman pengguna.

o Alokasi Memori Dinamis: ML dapat memprediksi pola akses

memori dan mengoptimalkan penempatan data dalam cache

atau memori utama untuk mengurangi swapping dan

meningkatkan performa.

 Peningkatan Keamanan dan Deteksi Anomali: AI/ML menjadi

alat yang sangat ampuh dalam pertahanan siber pada tingkat

sistem operasi:

o Deteksi Malware Berbasis Perilaku: Daripada hanya

mengandalkan tanda tangan malware yang sudah diketahui,

model ML dapat memantau perilaku proses, panggilan sistem

(system calls), dan aktivitas jaringan untuk mengidentifikasi

pola-pola yang mencurigakan atau anomali yang mungkin

menunjukkan adanya malware baru atau zero-day exploit.

o Otentikasi Adaptif: SO dapat menggunakan ML untuk

menganalisis pola login pengguna (lokasi, waktu, perangkat)

dan menyesuaikan tingkat keamanan otentikasi (misalnya,

 95

meminta otentikasi multifaktor jika terdeteksi aktivitas yang

tidak biasa).

o Manajemen Kerentanan Otomatis: AI dapat membantu

mengidentifikasi dan memprioritaskan kerentanan dalam

sistem, serta merekomendasikan patch atau konfigurasi

keamanan yang optimal.

 Antarmuka Pengguna yang Lebih Personal dan Intuitif: Integrasi

AI juga akan membuat interaksi dengan sistem operasi menjadi

lebih alami dan personal:

o Asisten Virtual Cerdas: Asisten suara seperti Google

Assistant, Siri, dan Cortana akan semakin terintegrasi dengan

kernel SO, memahami konteks, dan proaktif dalam membantu

pengguna. Mereka dapat mengelola tugas-tugas sistem

(misalnya, membersihkan disk, mengelola notifikasi)

berdasarkan preferensi pengguna.

o Personalisasi Adaptif: SO dapat mempelajari preferensi

pengguna (misalnya, aplikasi yang sering digunakan, waktu

penggunaan) dan secara otomatis menyesuaikan layout UI,

rekomendasi aplikasi, atau pengaturan sistem.

o Interaksi Multimodal: SO akan mendukung kombinasi input

suara, sentuhan, gesture, dan bahkan pikiran (melalui

antarmuka brain-computer) yang diinterpretasikan oleh AI.

 Pemanfaatan Hardware AI/ML: Masa depan SO juga akan

melibatkan dukungan native untuk hardware yang dipercepat AI

(misalnya, Neural Processing Units/NPUs). SO perlu

menyediakan API dan driver yang efisien untuk memungkinkan

aplikasi AI dan fungsi OS yang dipercepat AI untuk

memanfaatkan sepenuhnya kemampuan hardware ini.

 96

B. Sistem Operasi untuk IoT dan Edge Computing

Proliferasi perangkat Internet of Things (IoT) dan kebutuhan

akan pemrosesan data di dekat sumbernya (edge computing) telah

menciptakan segmen pasar baru yang menuntut sistem operasi yang

sangat spesifik. SO yang dirancang untuk IoT dan edge sangat

berbeda dari SO desktop atau server tradisional karena batasan

sumber daya yang ekstrem dan persyaratan fungsionalitas yang unik.

 Kebutuhan Spesifik OS untuk IoT: Perangkat IoT sangat beragam,

mulai dari sensor sederhana hingga smart appliance yang lebih

kompleks. SO untuk IoT harus memenuhi kriteria berikut:

o Footprint Sangat Kecil: Memori (RAM, flash storage) yang

terbatas. SO harus efisien dan ringkas.

o Konsumsi Daya Rendah: Banyak perangkat IoT bertenaga

baterai, sehingga SO harus mengelola daya secara ekstrem

(misalnya, dengan mode tidur dalam, siklus bangun-tidur yang

optimal).

o Kemampuan Real-Time (Opsional): Untuk beberapa aplikasi

IoT (misalnya, kontrol industri, otomotif), SO real-time

 97

(RTOS) diperlukan untuk menjamin respons yang dapat

diprediksi dalam batasan waktu yang ketat.

o Keamanan Kuat (Security from the Ground Up): Perangkat

IoT seringkali rentan karena sumber daya terbatas dan

penyebaran yang luas. SO harus menyertakan fitur keamanan

bawaan seperti Secure Boot, enkripsi firmware, over-the-air

(OTA) updates yang aman, dan isolasi proses yang efisien.

o Konektivitas Beragam: Dukungan untuk berbagai protokol

nirkabel dan jaringan jarak dekat (Wi-Fi, Bluetooth, Zigbee,

LoRaWAN, Thread).

o Manajemen Jarak Jauh: Kemampuan untuk provisioning,

monitoring, dan updating perangkat dari jarak jauh.

 Peran OS dalam Edge Computing: Edge computing adalah

paradigma komputasi di mana pemrosesan data dilakukan dekat

dengan sumber data (di "tepi" jaringan), bukan di pusat data cloud

yang jauh. Ini penting untuk aplikasi yang membutuhkan latensi

sangat rendah, bandwidth terbatas, atau privasi data.

o SO Ringan dan Robust: Perangkat edge (misalnya, gateway

IoT, mini-server) memerlukan SO yang cukup kuat untuk

melakukan pemrosesan data, analitik, dan bahkan

menjalankan model AI/ML, tetapi tetap efisien dan stabil

dalam lingkungan yang mungkin tidak terkontrol.

o Dukungan Kontainerisasi: SO di edge sering mendukung

container runtime (misalnya, Docker) untuk menyebarkan dan

mengelola aplikasi secara efisien. Ini memungkinkan

pembaruan software yang mudah dan isolasi beban kerja.

o Keamanan Terdistribusi: OS di edge harus mampu

berpartisipasi dalam model keamanan terdistribusi, menjaga

 98

integritas dan kerahasiaan data yang diproses secara lokal

sebelum dikirim ke cloud.

o Interoperabilitas Cloud-Edge: OS di edge harus dirancang

untuk berkomunikasi dan berintegrasi mulus dengan layanan

cloud, mengirimkan data yang telah diproses atau hanya hasil

akhir.

 Contoh OS untuk IoT dan Edge:

o FreeRTOS, Zephyr OS, RIOT OS: RTOS dan SO embedded

yang dirancang untuk perangkat microcontroller berdaya

rendah.

o Ubuntu Core, Fedora IoT: Versi Linux yang ringan dan

dioptimalkan untuk perangkat IoT dan gateway edge, sering

menggunakan container atau snap packages untuk manajemen

aplikasi.

o Microsoft Azure Sphere OS: SO berbasis Linux yang sangat

aman untuk perangkat IoT, dirancang dengan filosofi

"security-first".

o Google Fuchsia: Seperti yang dibahas sebelumnya, Fuchsia

dirancang untuk beradaptasi dari perangkat kecil hingga besar,

dengan fokus pada modularitas dan keamanan untuk dunia

yang terhubung.

 99

C. Pengembangan OS Open Source

Model pengembangan open source telah membuktikan diri

sebagai kekuatan pendorong inovasi yang tak terbantahkan dalam

pengembangan perangkat lunak, dan ini sangat terlihat pada sistem

operasi. Kehadiran dan dominasi Linux, Android, dan berbagai

proyek open source lainnya menunjukkan bahwa kolaborasi

komunitas global adalah masa depan yang cerah untuk SO.

 Definisi dan Filosofi Open Source: Open source berarti kode

sumber perangkat lunak tersedia untuk umum, memungkinkan

siapa pun untuk melihat, memodifikasi, dan mendistribusikannya.

Ini didasarkan pada filosofi transparansi, kolaborasi, dan

meritokrasi.

 Manfaat Pengembangan OS Open Source:

o Transparansi dan Auditabilitas: Kode sumber yang terbuka

memungkinkan peneliti keamanan dan pengembang untuk

meninjau kode secara ekstensif, membantu mengidentifikasi

dan memperbaiki bug atau celah keamanan lebih cepat

daripada sistem proprietary. Ini meningkatkan kepercayaan.

 100

o Inovasi dan Fleksibilitas: Model open source mendorong

inovasi karena siapa pun dapat mengusulkan fitur baru,

mengembangkan patch, atau membuat fork proyek untuk

mengejar arah baru. Ini menghasilkan beragam distribusi dan

adaptasi yang sesuai untuk berbagai kebutuhan (misalnya,

Linux untuk server, desktop, embedded, superkomputer).

o Stabilitas dan Keandalan: Ribuan mata yang meninjau kode

cenderung menemukan bug lebih cepat. Proyek open source

besar seperti kernel Linux memiliki proses pengujian dan

peninjauan yang sangat ketat yang melibatkan kontributor dari

seluruh dunia.

o Biaya dan Aksesibilitas: Banyak SO open source tersedia

secara gratis, mengurangi hambatan masuk bagi individu,

startup, dan negara berkembang.

o Kustomisasi: Organisasi atau individu dapat memodifikasi SO

open source untuk memenuhi kebutuhan spesifik mereka

tanpa terikat pada vendor lock-in.

o Ketersediaan Sumber Daya Belajar: Kode sumber yang

terbuka dan komunitas yang aktif menyediakan sumber daya

belajar yang melimpah bagi pengembang dan mahasiswa.

 Tantangan Pengembangan OS Open Source:

o Fragmentasi (pada beberapa kasus): Terlalu banyak pilihan

atau fork dapat menyebabkan fragmentasi, meskipun ini juga

bisa menjadi kekuatan.

o Dukungan Hardware: Kadang-kadang, driver hardware untuk

SO open source mungkin belum matang atau tidak tersedia

untuk hardware terbaru dibandingkan dengan SO proprietary.

o Model Bisnis: Menemukan model bisnis yang berkelanjutan

untuk mendukung pengembangan open source bisa menjadi

 101

tantangan, meskipun banyak perusahaan (Red Hat, Google,

Canonical) telah berhasil melakukannya.

 Peran dalam Masa Depan SO: Model open source akan terus

menjadi kekuatan utama dalam pengembangan SO masa depan,

terutama dengan meningkatnya kompleksitas dan kebutuhan akan

kustomisasi di lingkungan seperti cloud, IoT, dan edge. Banyak

inovasi penting (seperti containerization dan banyak alat AI/ML)

dibangun di atas fondasi open source.

Linux (Tux si penguin) atau ikon yang merepresentasikan open

source (misalnya, gembok terbuka dengan kode di dalamnya).

1. Beberapa "Ikon Pengembang" (orang-orang kecil) yang saling

terhubung dengan panah atau garis, menuju ke sebuah "Ikon Kode

Sumber" di tengah.

2. Di sekitar ikon kode sumber, bisa ditambahkan label seperti

"Kolaborasi", "Transparansi", "Inovasi", "Keamanan".

3. Juga bisa menampilkan ikon yang merepresentasikan "Komunitas

Global" (misalnya, peta dunia dengan orang-orang di atasnya)

yang berinteraksi dengan kode sumber.)*

 102

D. Tantangan dan Peluang ke Depan

Masa depan sistem operasi akan diwarnai oleh tantangan yang

semakin kompleks sekaligus peluang inovasi yang belum pernah

terjadi sebelumnya.

 Tantangan Utama:

o Keamanan Siber yang Semakin Canggih: Penyerang terus

mengembangkan metode baru. SO harus selangkah lebih maju

dengan model keamanan proaktif, zero-trust architectures,

dan integrasi AI untuk deteksi ancaman. Ancaman terhadap

supply chain perangkat lunak (misalnya, kerentanan dalam

komponen open source yang digunakan) juga menjadi

perhatian serius.

o Privasi Data: Dengan semakin banyaknya data sensitif yang

dikumpulkan oleh perangkat, SO harus menyediakan kontrol

privasi yang lebih kuat, transparan, dan dapat dikelola oleh

pengguna, sesuai dengan regulasi global (GDPR, CCPA).

o Kompleksitas yang Meningkat: Integrasi hardware baru

(komputasi kuantum, neuromorphic chips), AI/ML, IoT, dan

edge computing membuat SO semakin kompleks. Mengelola

kompleksitas ini tanpa mengorbankan stabilitas dan performa

adalah tantangan besar.

o Fragmentasi Ekosistem: Terutama di segmen mobile dan IoT,

fragmentasi hardware dan software terus menjadi masalah

yang menghambat pembaruan dan konsistensi.

o Efisiensi Daya dan Keberlanjutan: Dengan miliaran perangkat,

konsumsi daya menjadi isu keberlanjutan. SO harus terus

berinovasi dalam manajemen daya yang lebih cerdas untuk

mengurangi jejak karbon komputasi.

 103

 Peluang Inovasi:

o Komputasi Kuantum dan SO Kuantum: Pengembangan SO

khusus untuk mengelola quantum computers adalah bidang

yang baru muncul, menangani tantangan unik dari qubit dan

algoritma kuantum.

o Arsitektur CPU Baru: Munculnya arsitektur CPU seperti

ARM (di luar mobile, juga di desktop dan server) dan

kemungkinan processor berbasis RISC-V mendorong SO

untuk menjadi lebih portable dan adaptif terhadap hardware

heterogen.

o Sistem Operasi yang Benar-benar Adaptif/Self-Healing: SO

masa depan mungkin akan lebih proaktif dalam mendeteksi

dan memperbaiki masalahnya sendiri (misalnya,

mengidentifikasi dan mengisolasi komponen yang rusak,

memulihkan konfigurasi, atau bahkan memprediksi kegagalan

hardware).

o Interaksi Manusia-Komputer yang Revolusioner: Dengan AI,

SO dapat memfasilitasi antarmuka yang lebih alami—mulai

dari augmented reality (AR), virtual reality (VR), hingga

antarmuka brain-computer, mengubah cara kita berinteraksi

dengan informasi dan perangkat.

o SO untuk Komputasi Spasial: Dengan kemajuan AR/VR,

kebutuhan akan SO yang dapat mengelola lingkungan

komputasi 3D dan interaksi spasial akan meningkat.

o Keamanan Terverifikasi Formal: Penggunaan metode

verifikasi formal untuk membuktikan kebenaran kode kernel

dan komponen kritis, meningkatkan jaminan keamanan secara

matematis.

 104

Masa depan sistem operasi akan menjadi masa di mana SO tidak lagi

hanya sekadar pengelola sumber daya, tetapi menjadi entitas yang

semakin cerdas, responsif, dan terintegrasi secara mulus dengan dunia

fisik dan digital kita. Kemampuan untuk menyeimbangkan inovasi

dengan keamanan, privasi, dan keberlanjutan akan menjadi kunci

keberhasilannya..

 105

DAFTAR PUSTAKA

Krutz, R. L., & Vines, R. D. (2010). Cloud Security: A

Comprehensive Guide to Secure Cloud Computing. Wiley.

Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating

System Concepts (10th ed.). Wiley.

Stallings, W. (2018). Operating Systems: Internals and Design

Principles (9th ed.). Pearson.

Tanenbaum, A. S., & Bos, H. (2015). Modern Operating Systems (4th

ed.). Pearson.

Williams, B. (2019). Computer Systems Architecture: A Networking

Approach. Springer.

Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). *Operating

system concepts* (10th ed.). Wiley.

Tanenbaum, A. S., & Bos, H. (2014). *Modern operating systems*

(4th ed.). Pearson.

Stallings, W. (2017). *Operating systems: Internals and design

principles* (9th ed.). Pearson.

Bovet, D. P., & Cesati, M. (2005). *Understanding the Linux kernel*

(3rd ed.). O’Reilly Media.

Love, R. (2010). *Linux kernel development* (3rd ed.). Addison-

Wesley.

Microsoft. (2023). *Windows 11 documentation*. Retrieved from

https://learn.microsoft.com

Apple Inc. (2023). *macOS security overview*. Retrieved from

https://developer.apple.com

https://learn.microsoft.com/
https://developer.apple.com/

 106

The Linux Foundation. (2023). *Linux documentation project*.

Retrieved from https://www.kernel.org

Google. (2023). *Android open source project (AOSP)

documentation*. Retrieved from https://source.android.com

Docker Inc. (2023). *Docker documentation*. Retrieved from

https://docs.docker.com

VMware. (2023). *vSphere virtualization guide*. Retrieved from

https://www.vmware.com

FreeRTOS. (2023). *FreeRTOS reference manual*. Retrieved from

https://www.freertos.org

Open Group. (2023). *UNIX system standards and architecture*.

Retrieved from https://pubs.opengroup.org

Intel. (2023). *Intel virtualization technology documentation*.

Retrieved from https://www.intel.com

Kubernetes. (2023). *Kubernetes documentation*. Retrieved from

https://kubernetes.io

https://www.kernel.org/
https://source.android.com/
https://docs.docker.com/
https://www.vmware.com/
https://www.freertos.org/
https://pubs.opengroup.org/
https://www.intel.com/

	COVER MARTI.pdf
	Page 1

