

MODUL AJAR

ALGORITMA DAN PEMROGRAMAN

Oleh :

GEMA KHARISMAJATI, S.Kom.,M.Kom.

PROGRAM STUDI SISTEM INFORMASI

FAKULTAS SAINS DAN TEKNOLOGI

UNIVERSITAS PGRI YOGYAKARTA

2024

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | HALAMAN PENGESAHAN ii

HALAMAN PENGESAHAN

1. Judul Modul Ajar : Algoritma & Pemrograman

2. Pelaksana

a. Nama Lengkap : Gema Kharismajati, S.Kom.,M.Kom.

b. Jenis Kelamin : Laki-laki

c. Pangkat/Golongan : Penata Muda Tk I/IIIb

d. NIP/NIS : 199601142024011006

e. Program Studi/Fakultas : Sistem Informasi/Fakultas Sains & Teknologi

f. No HP/Email : 082226359766/gemakharismajati@upy.ac.id

Mengetahui,

Kaprodi Sistem Informasi

Ferra Arik Tridalestari, ST.,MT.

NIS. 19860115 202110 2 005

Yogyakarta, 01 Agustus 2024

Pelaksana/Penulis

Gema Kharismajati, S.Kom.,M.Kom.

NIS. 19960114 202401 1 006

Mengetahui,

Ketua Lembaga Pengembang Pendidikan

Selly Rahmawati, M.Pd.

NIS. 19870723 201302 2 002

mailto:082226359766/gemakharismajati@upy.ac.id

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | KATA PENGANTAR iii

KATA PENGANTAR

Modul ajar Algoritma dan Pemrograman ini dirancang untuk mendukung proses

kegiatan belajar mengajar, sehingga memudahkan para pembaca dalam memahami konsep-

konsep algoritma dan pemrograman, khususnya bagi mahasiswa Program Studi Sistem

Informasi di Universitas PGRI Yogyakarta. Modul ajar ini akan memberikan informasi

secara lengkap mengenai struktur data dasar, tipe data, operator, kontrol alur, dan teknik

dasar penyusunan algoritma. Dengan adanya modul ini, diharapkan mahasiswa dapat

mengaplikasikan algoritma dengan membuat program sederhana menggunakan bahasa

pemrograman yang dipelajari.

Penulis memilih bahasa pemrograman Python dalam modul ini karena kemudahan

belajarnya, sifat cross-platform, dukungan multi-device, dan terutama, kemudahannya

dalam implementasi algoritma. Semoga modul ajar Algoritma dan Pemrograman ini dapat

membantu pembaca dalam menyelesaikan masalah dengan metode pemecahan berdasarkan

konsep algoritma yang telah dipelajari.

Penulis menyadari bahwa dalam penyusunan modul ini masih terdapat kekurangan

dan jauh dari kesempurnaan. Oleh karena itu, kritik, saran, serta masukan yang

membangun sangat diharapkan demi perbaikan dan kesempurnaan modul ajar ini di masa

mendatang. Mengingat tidak ada sesuatu yang sempurna tanpa adanya masukan yang

konstruktif. Akhir kata penulis ucapkan terimakasih, harapan penulis semoga Modul Ajar

Algoritma dan Pemrograman ini dapat bermanfaat bagi semua pihak terutama mahasiswa

Prodi Sistem Informasi Universitas PGRI Yogyakarta.

Yogyakarta, Agustus 2024

Penulis

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Dafttar Isi iv

Dafttar Isi

MODUL AJAR .. i

ALGORITMA DAN PEMROGRAMAN ... i

HALAMAN PENGESAHAN .. ii

KATA PENGANTAR ... iii

Dafttar Isi ... iv

PENDAHULUAN ... vii

Modul 1: Pengenalan Algoritma dan Pemrograman .. 1

A. Penyajian materi ... 2

1. Pengertian Algoritma ... 2

2. Contoh Contoh Algoritma .. 4

3. Pengertian Pemrograman ... 7

4. Pengenalan Python ... 9

B. Latihan/Contoh ... 16

Latihan 1: Menulis algoritma untuk aktivitas sehari-hari. ... 16

Latihan 2: Menulis dan menjalankan program "Hello, World!" dalam Python. 17

C. Rangkuman .. 18

D. Tugas .. 19

E. Pustaka ... 20

Modul 2: Array & Linked List ... 21

A. Penyajian Materi Array .. 22

1. Array .. 22

2. Pengaksesan Elemen Array .. 22

3. Struktur Array .. 24

4. Implementasi array ... 26

B. Penyajian Materi Linked List ... 27

1. Linked List ... 27

2. Node Dalam Linked List .. 29

3. Implementasi Linked List di Python .. 33

C. Latihan/contoh ... 35

Latihan 1: Array Sederhana ... 35

Latihan 2: Linked List Sederhana .. 35

D. Rangkuman .. 36

E. Tugas .. 37

F. Pustaka ... 37

Modul 3: Algoritma Percabangan .. 39

A. Penyajian Materi .. 40

1. Pengertian Algoritma Percabangan .. 40

2. Percabangan ‘if’ ... 41

3. Percabangan ‘if-else’ .. 42

4. Percabangan ‘if-elif-else’ ... 42

5. Percabangan ‘if bersarang’/Nested if ... 43

B. Latihan/contoh ... 44

Latihan 1 : .. 44

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Dafttar Isi v

Latihan 2 : .. 45

C. Rangkuman .. 46

D. Tugas .. 47

E. Pustaka ... 47

Modul 4: Perulangan (Looping) ... 48

A. Penyajian Materi .. 49

1. Pengertian Algoritma Perulangan .. 49

2. Jenis-jenis Perulangan .. 50

3. Optimasi Perulangan .. 54

B. Latihan/contoh ... 55

1. Latihan Soal 1 : Menghitung Jumlah Bilangan .. 55

2. Latihan 2 : Mencetak Pola Bintang .. 55

3. Latihan 3: Menghitung Faktorial ... 56

C. Rangkuman .. 57

D. Tugas .. 57

E. Pustaka ... 57

Modul 5: Fungsi dan Prosedur ... 58

A. Penyajian Materi .. 59

1. Pengertian Fungsi dan Prosedur ... 59

a. Fungsi ... 59

2. Mendefinisikan Fungsi ... 60

3. Memanggil Fungsi ... 61

4. Parameter dan Argumen ... 62

5. Prosedur dalam Python .. 63

6. Manfaat Fungsi dan Prosedur ... 64

B. Latihan/contoh ... 65

Soal Latihan : Menggabungkan Konsep Fungsi dan Prosedur di Python 65

C. Rangkuman .. 66

D. Tugas .. 66

E. Pustaka ... 67

Modul 6: Konsep Rekursi .. 68

A. Penyajian Materi .. 69

1. Base Case (Kondisi Dasar): ... 69

2. Recursive Case (Kondisi Rekursif): ... 69

3. Stack Rekursi: .. 70

4. Visualisasi Rekursi: .. 70

5. Contoh Sederhana : Faktorial ... 71

6. Mengapa Rekursi Penting? .. 71

7. Kelebihan dan Kekurangan Rekursi ... 71

B. Latihan/contoh ... 71

C. Rangkuman .. 73

D. Tugas .. 73

E. Pustaka ... 74

Modul 7: Sorting .. 75

A. Penyajian Materi .. 76

1. Definisi Sorting : .. 76

2. Algoritma Sorting Sederhana : ... 76

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Dafttar Isi vi

B. Latihan/contoh ... 79

1. Latihan 1: Implementasi Bubble Sort... 79

Penjelasan: ... 80

2. Latihan 2 : Selection Sort ... 80

Penjelasan : .. 81

3. Latihan 3 : Insertion Sort.. 81

Petunjuk : ... 81

Kode Implementasi : .. 81

Penjelasan : .. 82

Output: ... 82

C. Rangkuman .. 82

D. Tugas .. 82

E. Pustaka ... 82

Modul 8: Searching .. 84

A. Penyajian Materi .. 85

1. Konsep Dasar ... 85

2. Teknik Pencarian .. 86

3. Cara Kerja Pencarian Biner .. 89

B. Latihan/contoh ... 90

C. Rangkuman .. 93

D. Tugas .. 93

E. Pustaka ... 93

Modul 9: Pemrograman Berorientasi Objek ... 94

A. Penyajian Materi .. 95

1. Kelas dan Objek ... 95

2. Enkapsulasi .. 96

3. Pewarisan ... 96

4. Polimorfisme .. 97

B. Latihan/contoh ... 98

C. Rangkuman .. 100

D. Tugas .. 100

E. Pustaka ... 101

Modul 10: Debugging ... 102

A. Penyajian materi ... 103

1. Pengertian Debugging .. 103

2. Jenis-jenis bug .. 103

3. Teknik Debugging dasar .. 103

4. Debugging dengan PyCharm ... 103

5. Contoh Debugging di PyCharm ... 104

B. Latihan/contoh ... 104

C. Rangkuman .. 106

D. Tugas .. 106

E. Pustaka ... 106

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | PENDAHULUAN vii

PENDAHULUAN

1. Deskripsi Mata Kuliah

A. Deskripsi Umum

Mata kuliah Algoritma dan Pemrograman merupakan salah satu mata kuliah

dasar yang wajib diambil oleh mahasiswa program studi Sistem Informasi di

Fakultas Sains dan Teknologi, Universitas PGRI Yogyakarta. Mata kuliah ini

dirancang untuk memberikan pemahaman fundamental tentang konsep algoritma

dan dasar-dasar pemrograman kepada mahasiswa. Melalui mata kuliah ini,

mahasiswa akan mempelajari berbagai teknik dalam merancang, menganalisis, dan

mengimplementasikan algoritma menggunakan bahasa pemrograman, khususnya

Python.

Pada awal perkuliahan, mahasiswa akan diperkenalkan dengan konsep dasar

algoritma dan pemrograman. Pemahaman ini mencakup struktur data dasar seperti

array dan linked list, serta kontrol aliran program termasuk percabangan dan

perulangan. Mahasiswa akan belajar menyusun algoritma untuk menyelesaikan

berbagai masalah komputasi dan memahami bagaimana algoritma tersebut dapat

diimplementasikan dalam bentuk program yang efisien dan efektif.

Selama perkuliahan, berbagai teknik pemrograman akan diajarkan, mulai dari

penggunaan fungsi dan prosedur hingga konsep rekursi. Mahasiswa juga akan

mempelajari teknik sorting dan searching yang penting dalam pengolahan data.

Implementasi teknik-teknik ini dilakukan menggunakan bahasa pemrograman

Python, yang terkenal dengan sintaksisnya yang sederhana dan kemampuannya

yang kuat dalam pemrosesan data.

Selain itu, mata kuliah ini juga mencakup pengantar pemrograman

berorientasi objek (OOP), di mana mahasiswa akan mempelajari konsep dasar OOP

seperti kelas, objek, dan metode. Pemahaman ini penting untuk pengembangan

aplikasi yang lebih kompleks dan terstruktur. Implementasi konsep OOP dalam

Python akan membantu mahasiswa memahami bagaimana cara kerja pemrograman

berorientasi objek dan aplikasinya dalam pengembangan perangkat lunak.

Penekanan juga diberikan pada kemampuan mahasiswa untuk menguji dan

melakukan debugging pada program yang mereka buat. Ini termasuk teknik untuk

mendeteksi dan memperbaiki kesalahan dalam kode, serta memastikan bahwa

program berfungsi sesuai dengan yang diharapkan. Kemampuan ini sangat penting

untuk menghasilkan perangkat lunak yang andal dan bebas dari bug.

Mahasiswa juga akan diajarkan tentang pentingnya dokumentasi kode

program. Dokumentasi yang baik akan memudahkan pengembangan dan

pemeliharaan kode di masa depan serta membantu tim pengembang lain untuk

memahami dan menggunakan kode yang telah ditulis. Mata kuliah ini mengajarkan

teknik-teknik dokumentasi yang efektif untuk memastikan bahwa setiap bagian

kode terdokumentasi dengan jelas dan lengkap.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | PENDAHULUAN viii

Di akhir perkuliahan, mahasiswa akan diuji melalui proyek akhir yang

mengharuskan mereka untuk menerapkan semua konsep yang telah dipelajari

selama semester. Proyek ini akan menguji kemampuan mereka dalam merancang,

mengimplementasikan, menguji, dan mendokumentasikan solusi pemrograman

yang kompleks. Presentasi proyek akhir juga akan menjadi bagian dari penilaian, di

mana mahasiswa harus mampu menjelaskan solusi yang mereka kembangkan dan

menjawab pertanyaan dari dosen dan rekan-rekan mereka.

Secara keseluruhan, mata kuliah Algoritma dan Pemrograman bertujuan

untuk membekali mahasiswa dengan pemahaman yang kuat tentang dasar-dasar

pemrograman dan kemampuan untuk mengembangkan algoritma yang efektif dan

efisien. Melalui pendekatan praktikum dan teori yang seimbang, mahasiswa

diharapkan mampu menerapkan pengetahuan yang mereka peroleh dalam berbagai

konteks pemrograman dan siap menghadapi tantangan dalam dunia teknologi

informasi yang terus berkembang.

B. Deskripsi Khusus

Mata kuliah ini mencakup beberapa topik utama yang diajarkan selama satu

semester, yang meliputi:

a Pengenalan Algoritma dan Pemrograman: Mahasiswa akan belajar tentang

definisi algoritma, struktur dasar algoritma, dan pengenalan dasar

pemrograman menggunakan Python.

b Struktur Data Dasar: Pembahasan tentang array dan linked list, termasuk

cara mengakses, menyimpan, dan memanipulasi data dalam struktur ini.

c Kontrol Aliran Program: Teknik-teknik percabangan (if-else) dan

perulangan (for, while) untuk mengontrol aliran eksekusi program.

d Fungsi dan Prosedur: Penggunaan fungsi dan prosedur untuk modularisasi

program, termasuk parameter, return values, dan scope.

e Rekursi: Konsep dan aplikasi rekursi dalam pemrograman, serta bagaimana

cara kerjanya dibandingkan dengan iterasi.

f Sorting dan Searching: Teknik-teknik pengurutan dan pencarian data,

termasuk bubble sort, selection sort, insertion sort, dan binary search.

g Pengantar Pemrograman Berorientasi Objek (OOP): Konsep dasar OOP

seperti kelas, objek, pewarisan, dan polimorfisme.

h Debugging dan Testing: Teknik-teknik untuk menguji dan memperbaiki

kesalahan dalam program, serta pentingnya testing dalam pengembangan

perangkat lunak.

i Proyek Akhir: Implementasi proyek akhir yang mencakup seluruh konsep

yang telah dipelajari, dengan fokus pada pengembangan solusi

pemrograman yang kompleks dan terstruktur.

Mata kuliah ini memberikan landasan yang kuat bagi mahasiswa untuk

melanjutkan ke mata kuliah pemrograman yang lebih lanjut dan siap menghadapi

tantangan di bidang teknologi informasi. Dengan pemahaman yang mendalam

tentang algoritma dan dasar-dasar pemrograman, mahasiswa diharapkan mampu

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | PENDAHULUAN ix

menjadi profesional yang kompeten dan inovatif dalam mengembangkan solusi

teknologi.

2. Prasyarat Mata Kuliah

Untuk dapat mengikuti mata kuliah Algoritma dan Pemrograman, mahasiswa

diharapkan telah memiliki pengetahuan dasar dalam penggunaan komputer dan

memahami konsep dasar matematika, termasuk aljabar dan logika dasar. Prasyarat ini

akan membantu mahasiswa dalam memahami materi yang diajarkan dan mengikuti

praktik pemrograman dengan lebih mudah.

3. Rencana Pembelajaran

Pertemuan Topik Sub Topik

1-2 Pengantar Algoritma dan Pemrograman Pengenalan Python

3-4 Tipe Data dan Variabel Operator, dan Ekspresi

5-6 Struktur Kontrol Percabangan dan Pengulangan

7-8 Fungsi dan Modul

9-10 Struktur Data Dasar List, Tuple, Set, dan Dictionary

11-12 Pemrograman Berbasis Objek

13-14 Pengujian dan Debugging

15 Review dan Persiapan Ujian

16 Ujian Akhir Semester

4. Petunjuk Penggunaan Modul Ajar

4.1. Untuk Mahasiswa

a. Baca Secara Berurutan: Ikuti urutan bab yang telah disusun untuk memahami

konsep secara bertahap.

b. Praktik Mandiri: Lakukan latihan pemrograman yang diberikan untuk

memperdalam pemahaman.

c. Diskusi dan Tanya Jawab: Manfaatkan sesi diskusi di kelas dan forum online

untuk mengajukan pertanyaan.

d. Rujuk Referensi Tambahan: Gunakan referensi tambahan yang disarankan

untuk memperluas wawasan.

e. Gunakan tes formatif dan gunakan kunci jawaban untuk mengecek

pemahaman

4.2. Untuk Dosen

a. Panduan Mengajar: Gunakan buku ajar sebagai panduan utama dalam

menyampaikan materi di kelas.

b. Konteks Praktis: Sertakan contoh kasus praktis yang relevan untuk

memperkuat konsep yang diajarkan.

c. Evaluasi dan Umpan Balik: Berikan tugas dan kuis secara berkala untuk

mengukur pemahaman mahasiswa dan berikan umpan balik konstruktif.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | PENDAHULUAN x

d. Diskusi Kelompok: Dorong mahasiswa untuk bekerja dalam kelompok untuk

menyelesaikan tugas yang kompleks.

5. Capaian Pembelajaran

CPMK Deskripsi

CPMK1
Mahasiswa mampu menjelaskan konsep dasar algoritma dan pemrograman termasuk

struktur data dasar, tipe data, operator, dan kontrol alur.

CPMK2
Mahasiswa mampu mengidentifikasi, merumuskan, dan menyelesaikan masalah

menggunakan pendekatan algoritmis dengan efisien dan efektif.

CPMK3
Mahasiswa mampu mengimplementasikan algoritma dalam bahasa pemrograman

Python.

CPMK4
Mahasiswa mampu menguji dan melakukan debugging pada program untuk

memastikan program berfungsi sesuai dengan yang diharapkan.

CPMK5
Mahasiswa mampu mendokumentasikan kode program dengan baik sehingga dapat

dipahami dan digunakan oleh pihak lain.

CPMK6
Mahasiswa mampu bekerja dalam tim untuk mengembangkan solusi pemrograman

yang kompleks serta mampu membagi tugas dan tanggung jawab secara efektif.

6. Cek Kemampuan Awal Mahasiswa

Untuk mengevaluasi kemampuan awal mahasiswa, berikut adalah beberapa

pertanyaan yang dapat digunakan:

a. Apa yang Anda ketahui tentang algoritma? Berikan contoh sederhana.

b. Jelaskan perbedaan antara variabel dan tipe data.

c. Apa yang Anda ketahui tentang struktur kontrol dalam pemrograman?

Sebutkan beberapa contohnya.

d. Apakah Anda pernah menulis program komputer sebelumnya? Jika ya, dalam

bahasa pemrograman apa?

e. Bagaimana Anda mendefinisikan masalah dan menemukan solusi dalam

kehidupan sehari-hari?

Pertanyaan-pertanyaan diatas, akan membantu mengidentifikasi pemahaman

awal mahasiswa tentang konsep dasar yang akan dibahas dalam mata kuliah Algoritma

dan Pemrograman. Tujuan utamanya sebagai berikut :

a. Mengukur pemahaman awal tentang konsep dasar algoritma.

b. Menilai pemahaman tentang dasar-dasar pemrograman.

c. Mengidentifikasi pengetahuan tentang kontrol alur dalam pemrograman.

d. Mengetahui pengalaman sebelumnya dalam pemrograman dan bahasa

pemrograman yang digunakan.

e. Mengevaluasi kemampuan berpikir logis dan sistematis dalam pemecahan

masalah.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 1: Pengenalan Algoritma dan Pemrograman 1

Modul 1: Pengenalan Algoritma dan Pemrograman

Modul ini dirancang sebagai pengantar untuk mempelajari algoritma dan pemrograman,

dengan fokus pada penggunaan bahasa Python. Di dalamnya, mahasiswa akan dibimbing

untuk memahami konsep dasar algoritma, definisi pemrograman, dan bagaimana

memulai pengembangan program dengan Python. Modul ini memiliki relevansi yang

signifikan sebagai landasan untuk mendalami konsep-konsep pemrograman yang lebih

kompleks dan pengembangan perangkat lunak yang lebih canggih. Dengan mengikuti

modul ini, mahasiswa diharapkan mampu memahami dasar-dasar algoritma dan

pemrograman, mengenal fitur utama bahasa Python serta lingkungan pengembangannya,

dan akhirnya mampu menulis serta menjalankan program-program sederhana dalam

Python. Capaian pembelajaran ini merupakan langkah awal yang esensial dalam

membangun keterampilan pemrograman yang lebih lanjut.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 1: Pengenalan Algoritma dan Pemrograman 2

A. Penyajian materi

1. Pengertian Algoritma

Algoritma adalah urutan langkah-langkah logis dan sistematis yang

dirancang untuk menyelesaikan suatu masalah atau mencapai tujuan tertentu.

Algoritma digunakan untuk memberikan solusi yang terstruktur terhadap

permasalahan yang ada. Dalam konteks pemrograman, algoritma merupakan

langkah awal yang harus ditulis sebelum memulai penulisan kode program.

Biasanya, masalah yang dapat dipecahkan dengan pemrograman komputer

berkaitan dengan perhitungan matematis.

Algoritma adalah inti dari ilmu komputer dan konsep ini juga dapat

diterapkan dalam berbagai bidang lainnya. Meskipun sering dikaitkan dengan ilmu

komputer, algoritma juga hadir dalam kehidupan sehari-hari. Sebagai contoh, resep

pembuatan kue atau masakan adalah bentuk algoritma dalam dunia kuliner. Setiap

resep memiliki serangkaian langkah yang harus diikuti untuk menghasilkan

masakan yang diinginkan. Jika langkah-langkah dalam resep tersebut tidak disusun

secara logis, hasil masakan mungkin tidak akan memuaskan.

Ketika mengikuti resep, langkah pertama adalah membaca instruksi dengan

seksama dan melaksanakan setiap langkah sesuai dengan urutan yang ditentukan.

Proses pembuatan masakan ini dapat melibatkan berbagai alat atau pemroses,

seperti manusia, robot, komputer, atau perangkat elektronik lainnya. Pemroses ini

bertugas untuk menjalankan algoritma secara teratur dan sesuai dengan tujuan yang

diinginkan.

Untuk lebih memahami konsep algoritma, pertimbangkan contoh sederhana

berikut: pertukaran isi antara dua gelas, Gelas A dan Gelas B. Gelas A berisi

larutan berwarna biru, sementara Gelas B berisi larutan berwarna kuning (lihat

Gambar 1.1). Tujuan dari algoritma ini adalah untuk menukar isi kedua gelas

sehingga Gelas A yang awalnya berisi larutan biru kini berisi larutan kuning dari

Gelas B.

Ilustrasi permasalahan dapat dilihat dibawah ini :

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 1: Pengenalan Algoritma dan Pemrograman 3

Gambar 1.1 Penukaran isi gelas isinya Gelas A dan Gelas B

Untuk menyelesaikan masalah pertukaran isi antara dua gelas dengan benar, kita

memerlukan gelas tambahan yang disebut Gelas C sebagai tempat penyimpanan

sementara. Berikut adalah langkah-langkah algoritma yang perlu diikuti:

a. Persiapan Gelas Cadangan: Siapkan Gelas C yang kosong.

b. Pindahkan Larutan dari Gelas A: Tuangkan larutan dari Gelas A ke Gelas C.

c. Pindahkan Larutan dari Gelas B: Tuangkan larutan dari Gelas B ke Gelas A.

d. Pindahkan Larutan dari Gelas C: Tuangkan larutan dari Gelas C ke Gelas B.

Proses pertukaran ini dapat diilustrasikan dengan urutan gambar berikut:

1. Kondisi Awal: Menunjukkan keadaan sebelum pertukaran dimulai, dengan

tambahan Gelas C.

Gambar 1.2 Penukaran isi gelas A,B dan C

2. Langkah Pertama: Larutan dari Gelas A dituang ke Gelas C.

Gambar 1.3 Penukaran isi gelas isinya Gelas A ke Gelas C

3. Langkah Kedua: Larutan dari Gelas B dituang ke Gelas A.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 1: Pengenalan Algoritma dan Pemrograman 4

Gambar 1.4 Penukaran isi gelas isinya Gelas B ke Gelas A

4. Langkah Ketiga: Larutan dari Gelas C dituang ke Gelas B.

Gambar 1.5 Penukaran isi gelas isinya Gelas C ke Gelas B

Contoh algoritma ini menunjukkan bahwa pertukaran isi antara dua gelas dapat

dilakukan dengan cara yang cukup sederhana. Meskipun proses ini tampak mudah

bagi manusia, komputer memerlukan urutan langkah yang sistematis dan logis

untuk menyelesaikannya. Inilah inti dari konsep algoritma: serangkaian langkah

yang teratur dan logis untuk menyelesaikan suatu masalah dengan cara yang efisien

dan benar.

2. Contoh Contoh Algoritma

1. Resep Masakan: Algoritma dalam resep masakan menggambarkan langkah-

langkah terstruktur untuk menghasilkan makanan tertentu. Proses ini sering

kali melibatkan beberapa tahapan berikut:

 Persiapan Bahan: Mengukur dan menyiapkan bahan-bahan yang

diperlukan seperti tepung, gula, telur, dan mentega.

 Pencampuran Bahan: Mencampur bahan-bahan sesuai urutan yang

ditentukan dalam resep. Misalnya, mencampur bahan kering terlebih

dahulu sebelum menambahkan bahan basah.

 Memanaskan Oven: Mengatur suhu oven sesuai dengan instruksi resep.

Misalnya, memanaskan oven pada suhu 180°C.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 1: Pengenalan Algoritma dan Pemrograman 5

 Memanggang: Menuangkan adonan ke dalam loyang dan

memanggangnya dalam oven selama waktu yang ditentukan, misalnya

30 menit.

 Pendinginan dan Penyajian: Setelah matang, mendinginkan kue

sebelum menyajikannya.

Setiap langkah dalam resep harus dilakukan dengan urutan yang benar untuk

memastikan hasil akhir yang sesuai. Misalnya, jika bahan tidak dicampur

dengan benar atau oven tidak dipanaskan terlebih dahulu, kue mungkin tidak

berhasil.

2. Proses Pencarian Data: Algoritma pencarian linear yang memeriksa setiap

elemen dalam daftar satu per satu hingga menemukan elemen yang dicari.

Algoritma pencarian data digunakan untuk menemukan elemen tertentu dalam

struktur data seperti daftar atau array. Dua contoh metode pencarian adalah:

a. Pencarian Linear : Algoritma ini memeriksa setiap elemen dalam

daftar satu per satu dari awal hingga akhir untuk menemukan elemen

yang dicari. Misalnya, jika kita mencari angka 7 dalam daftar [1, 3,

5, 7, 9], algoritma ini akan memeriksa setiap elemen hingga

menemukan angka 7.

Langkah-langkah:

1. Mulai dari elemen pertama.

2. Bandingkan elemen saat ini dengan elemen yang dicari.

3. Jika cocok, kembalikan indeks elemen tersebut.

4. Jika tidak, lanjutkan ke elemen berikutnya.

5. Jika elemen tidak ditemukan setelah memeriksa seluruh daftar,

kembalikan nilai yang menunjukkan bahwa elemen tidak ada.

b. Pencarian Biner : Algoritma ini digunakan pada daftar yang sudah

diurutkan dan memanfaatkan teknik pembagian dan penaklukan untuk

mengurangi jumlah perbandingan. Ini membagi daftar menjadi dua

bagian, membandingkan elemen tengah dengan elemen yang dicari, dan

kemudian mencari hanya di setengah bagian yang relevan.

Langkah-langkah :

1. Tentukan indeks awal dan akhir dari daftar.

2. Temukan elemen tengah.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 1: Pengenalan Algoritma dan Pemrograman 6

3. Bandingkan elemen tengah dengan elemen yang dicari.

4. Jika cocok, kembalikan indeks elemen tersebut.

5. Jika elemen yang dicari lebih kecil dari elemen tengah, ulangi

pencarian pada setengah bagian kiri.

6. Jika elemen yang dicari lebih besar, ulangi pencarian pada

setengah bagian kanan.

7. Ulangi langkah-langkah ini hingga elemen ditemukan atau

rentang pencarian menjadi kosong.

3. Algoritma Sortir: Algoritma pengurutan seperti Bubble Sort atau Merge Sort

yang menyusun elemen dalam urutan tertentu. Algoritma sortir digunakan

untuk menyusun elemen dalam urutan tertentu, baik dari yang terkecil ke yang

terbesar atau sebaliknya. Dua algoritma sortir yang umum adalah:

a. Bubble Sort: Algoritma ini bekerja dengan membandingkan pasangan

elemen yang berdekatan dan menukarnya jika urutannya salah. Proses

ini diulang hingga tidak ada elemen yang perlu ditukar lagi.

Langkah-langkah:

1. Mulai dari elemen pertama dan bandingkan dengan elemen

berikutnya.

2. Jika elemen pertama lebih besar, tukar dengan elemen kedua.

3. Lanjutkan hingga akhir daftar.

4. Ulangi langkah-langkah ini untuk seluruh daftar hingga tidak

ada lagi penukaran yang diperlukan.

b. Merge Sort: Algoritma ini menggunakan teknik pembagian dan

penaklukan dengan membagi daftar menjadi dua bagian, mengurutkan

setiap bagian secara terpisah, dan kemudian menggabungkannya

kembali dalam urutan yang benar.

Langkah-langkah:

1. Bagi daftar menjadi dua bagian hingga setiap bagian hanya

memiliki satu elemen.

2. Gabungkan dua bagian yang sudah diurutkan menjadi satu

daftar yang lebih besar.

3. Ulangi proses penggabungan hingga seluruh daftar terurut.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 1: Pengenalan Algoritma dan Pemrograman 7

3. Pengertian Pemrograman

Pemrograman adalah proses menulis, menguji, dan memelihara kode-kode

komputer yang memungkinkan perangkat keras dan perangkat lunak untuk

melakukan tugas tertentu. Kode ini ditulis dalam bahasa pemrograman, yang

merupakan serangkaian instruksi yang dapat dipahami dan dijalankan oleh

komputer. Pemrograman merupakan inti dari pengembangan perangkat lunak dan

aplikasi, serta merupakan alat utama dalam menciptakan solusi digital yang

menyelesaikan masalah atau memenuhi kebutuhan spesifik.

a. Definisi Pemrograman

 Proses Penulisan Kode: Pemrograman melibatkan penulisan kode dalam

bahasa pemrograman untuk memberi instruksi kepada komputer mengenai

apa yang harus dilakukan. Ini seperti memberikan arahan yang terperinci

kepada komputer untuk menjalankan tugas tertentu.

Contoh: Menulis kode untuk membuat aplikasi yang menghitung suhu

tubuh dari data input yang diberikan oleh sensor.

 Pengembangan Perangkat Lunak: Melalui pemrograman, kita dapat

membuat perangkat lunak yang mencakup berbagai aplikasi, dari aplikasi

desktop hingga perangkat mobile dan web.

Contoh: Aplikasi pengolah kata seperti Microsoft Word atau aplikasi

ponsel seperti WhatsApp.

 Penyelesaian Masalah: Pemrograman adalah alat untuk menyelesaikan

masalah dengan membuat solusi berbasis komputer yang efisien dan

efektif.

Contoh: Mengembangkan perangkat lunak yang membantu mengelola

inventaris barang dalam sebuah toko.

b. Tujuan Pemrograman

 Mengotomatisasi Tugas: Pemrograman memungkinkan kita untuk

membuat perangkat lunak yang otomatis menjalankan tugas-tugas tertentu

tanpa perlu campur tangan manusia secara langsung. Ini mirip dengan

bagaimana mesin cuci otomatis mencuci pakaian tanpa kita harus

melakukannya secara manual.

Contoh: Misalnya, jika Anda bekerja di sebuah perusahaan yang

memerlukan laporan bulanan, Anda dapat menulis program yang

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 1: Pengenalan Algoritma dan Pemrograman 8

secara otomatis mengumpulkan data dan membuat laporan tanpa

harus melakukannya secara manual setiap bulan.

 Pengembangan Perangkat Lunak: Pemrograman adalah alat utama untuk

membuat perangkat lunak yang kita gunakan setiap hari, mulai dari aplikasi

ponsel hingga sistem operasi komputer.

Contoh: Aplikasi seperti WhatsApp, yang Anda gunakan untuk

berkomunikasi, adalah hasil dari pemrograman. Tanpa

pemrograman, aplikasi ini tidak akan ada.

 Pemecahan Masalah: Pemrograman membantu kita menyelesaikan

masalah kompleks dengan mengembangkan solusi berbasis komputer. Ini

seperti menyusun puzzle yang sangat besar dan rumit di mana komputer

membantu menyatukan semua potongan.

Contoh: Jika Anda ingin menghitung jumlah total pengeluaran Anda

selama sebulan, Anda bisa menulis program untuk menjumlahkan

angka-angka tersebut dengan cepat dan akurat.

 Pengembangan Kreativitas: Pemrograman memungkinkan kita untuk

mewujudkan ide-ide kreatif menjadi aplikasi nyata. Ini seperti melukis

dengan kode komputer sebagai kuas Anda.

Contoh: Jika Anda punya ide untuk sebuah game video atau aplikasi

pendidikan, Anda bisa menggunakan pemrograman untuk

merealisasikan ide tersebut dan melihat hasilnya.

c. Pentingnya Pemrograman

 Automatisasi : Pemrograman memungkinkan otomatisasi tugas-tugas

rutin, mengurangi kebutuhan akan intervensi manusia, dan meningkatkan

efisiensi.

Contoh: Menggunakan skrip untuk otomatisasi pengolahan data atau

pembuatan laporan.

 Inovasi Teknologi : Dengan pemrograman, kita dapat menciptakan

teknologi baru yang dapat mengubah cara kita hidup dan bekerja.

Contoh: Teknologi seperti kecerdasan buatan (AI) dan Internet of Things

(IoT) yang memerlukan pemrograman untuk berfungsi.

 Keterampilan Profesional : Keterampilan pemrograman adalah

kemampuan yang sangat dicari di berbagai industri, dari teknologi hingga

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 1: Pengenalan Algoritma dan Pemrograman 9

kesehatan, karena hampir semua sektor memanfaatkan perangkat lunak

dan teknologi komputer.

Contoh: Pengembang perangkat lunak, analis data, dan insinyur perangkat

keras semua memerlukan keterampilan pemrograman.

 Pengembangan Kreatif : Pemrograman memberikan alat untuk

mengekspresikan kreativitas melalui pembuatan aplikasi, game, dan sistem

yang inovatif.

Contoh: Membuat aplikasi permainan atau perangkat lunak kreatif seperti

perangkat grafis dan desain.

4. Pengenalan Python

a. Sejarah Python

Python adalah bahasa pemrograman tingkat tinggi yang dikembangkan

oleh Guido van Rossum. Bahasa ini pertama kali dirilis pada 20 Februari 1991.

Guido van Rossum memulai proyek Python pada akhir 1980-an sebagai

penerus dari bahasa pemrograman ABC, yang dikembangkan di Centrum

Wiskunde & Informatica (CWI) di Belanda. Python diciptakan dengan tujuan

untuk menyederhanakan proses pengembangan perangkat lunak dengan

menyediakan bahasa yang bersih dan mudah dipahami.

Nama "Python" diambil dari grup komedi Inggris terkenal, Monty

Python. Van Rossum menginginkan nama yang pendek, unik, dan sedikit

misterius, yang mudah diingat oleh orang-orang. Hal ini juga mencerminkan

filosofi di balik Python, yang tidak hanya bertujuan untuk menjadi bahasa yang

kuat tetapi juga menyenangkan untuk digunakan.

Python terus berkembang dan menjadi salah satu bahasa pemrograman

yang paling populer di dunia. Pada tahun 2000, Python 2.0 dirilis, membawa

sejumlah fitur baru seperti pengumpulan sampah otomatis dan dukungan untuk

Unicode. Kemudian, pada tahun 2008, Python 3.0 diperkenalkan sebagai versi

yang tidak kompatibel ke belakang dengan Python 2, tetapi membawa

peningkatan besar dalam hal konsistensi sintaks dan pengelolaan memori.

b. Fitur Utama Python

 Sintaks yang mudah dibaca dan ditulis : Python dirancang dengan fokus

pada keterbacaan kode. Sintaks Python menyerupai bahasa Inggris,

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 1: Pengenalan Algoritma dan Pemrograman 10

membuatnya lebih intuitif dan mudah dipelajari, terutama bagi pemula.

Struktur kode yang menggunakan indentasi juga memaksa programmer

untuk menulis kode yang rapi dan terstruktur.

 Interpreted Language: Python adalah bahasa yang dieksekusi oleh

interpreter baris per baris. Artinya, Python tidak perlu dikompilasi sebelum

dijalankan, yang memungkinkan pengembang untuk menjalankan kode

dengan cepat dan melihat hasilnya segera. Ini sangat membantu dalam

proses debugging dan pengembangan secara iteratif.

 Dukungan Multiplatform: Python dapat dijalankan di berbagai sistem

operasi seperti Windows, macOS, Linux, dan lainnya tanpa perubahan

signifikan pada kode. Ini menjadikannya pilihan yang fleksibel bagi

pengembang yang perlu membangun aplikasi lintas platform.

 Pustaka standar yang luas: Salah satu kekuatan utama Python adalah

pustaka standarnya yang sangat luas, yang mencakup modul-modul untuk

berbagai tugas seperti pemrosesan string, manipulasi file, komunikasi

jaringan, pemrograman sistem, dan banyak lagi. Selain itu, ada ribuan

pustaka pihak ketiga yang tersedia, yang memperluas kemampuan Python

untuk bidang seperti pengembangan web (Django, Flask), analisis data

(Pandas, NumPy), pembelajaran mesin (TensorFlow, scikit-learn),

otomatisasi, dan lain-lain.

 Open Source: Python adalah perangkat lunak sumber terbuka, yang

berarti siapa saja dapat menggunakannya, memodifikasi, dan

mendistribusikan kembali bahasa ini tanpa biaya. Komunitas Python yang

besar dan aktif secara terus-menerus mengembangkan bahasa ini,

memperbaiki bug, dan menambahkan fitur-fitur baru.

 Dukungan untuk berbagai pradigma pemrograman: Python

mendukung beberapa paradigma pemrograman termasuk pemrograman

berorientasi objek, pemrograman fungsional, dan pemrograman

prosedural. Fleksibilitas ini memungkinkan pengembang untuk memilih

pendekatan yang paling sesuai untuk proyek mereka.

 Ekosistem yang kuat dan komunitas yang aktif: Python memiliki

ekosistem yang kaya dengan berbagai framework, pustaka, dan alat

pengembangan yang mendukung berbagai domain aplikasi. Selain itu,

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 1: Pengenalan Algoritma dan Pemrograman 11

komunitas Python yang besar dan aktif memberikan dukungan,

dokumentasi, dan pembaruan yang terus-menerus, menjadikan Python

sebagai salah satu bahasa yang paling cepat berkembang.

c. Instalasi dan Pengaturan Lingkungan (PyCharm)

Untuk memulai pemrograman dengan Python, Anda perlu menginstal Python

terlebih dahulu dan memilih lingkungan pengembangan yang sesuai. Salah satu

Integrated Development Environment (IDE) yang populer digunakan untuk

pengembangan Python adalah PyCharm.

Langkah 1: Instalasi Python

1. Unduh Python:

 Buka peramban web Anda dan kunjungi situs resmi Python di

https://www.python.org/.

 Di halaman utama, Anda akan melihat tombol "Download Python".

Situs web secara otomatis mendeteksi sistem operasi Anda dan

memberikan tautan unduhan yang sesuai.

 Pilih versi python lalu Klik tombol tersebut untuk mengunduh

penginstal Python

Gambar 1.6 Instalasi Python (1)

2. Instalasi Python

 Setelah unduhan selesai, cari file penginstal di direktori unduhan Anda

dan klik dua kali untuk menjalankan file.exe.

https://www.python.org/

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 1: Pengenalan Algoritma dan Pemrograman 12

 Saat jendela instalasi muncul, pastikan untuk mencentang kotak “install

launcher for all user (recommended)” dan centang kotak yang

bertuliskan "Add Python to PATH" di bagian bawah jendela. Ini

penting agar Anda dapat menjalankan Python dari baris perintah.

 Klik "Install Now" untuk melanjutkan. Instalasi akan memakan waktu

beberapa menit.

Gambar 1.7 Instalasi Python (2)

 Menunggu instalasi python selesai

 Jika sudah selesai, akan muncul layar yang menyatakan bahwa

penginstalan telah berakhir atau sukses , lalu klik “close”

Gambar 1.8 Instalasi Python (3)

Langkah 2: Pengaturan Lingkungan di PyCharm

1. Unduh dan Instal PyCharm

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 1: Pengenalan Algoritma dan Pemrograman 13

 Kunjungi situs resmi PyCharm di https://www.jetbrains.com/pycharm/.

 Di halaman unduhan, Anda akan melihat dua versi PyCharm:

Community dan Professional. Versi Community gratis dan cukup untuk

sebagian besar kebutuhan pemrograman dasar. Versi Professional

berbayar dan menawarkan fitur tambahan yang lebih canggih.

 Klik tombol "Download" di bawah versi yang Anda pilih.

Gambar 1.9 Instalasi PyCharm (1)

 Setelah unduhan selesai, buka file instalasi dan ikuti instruksi untuk

menginstal PyCharm di komputer Anda.

Gambar 1.10 Instalasi PyCharm (2)

https://www.jetbrains.com/pycharm/

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 1: Pengenalan Algoritma dan Pemrograman 14

 Setelah instalasi selesai, akan muncul layar bahwa pycharm sudah

terinstal, jika ingin langsung melanjutkan dan menjalankannya, centang

pada kotak “Run PyCharm Community Edition” lalu klik finish.

Gambar 1.11 Instalasi PyCharm (3)

2. Membuat Proyek Baru di PyCharm

 Setelah instalasi selesai, buka PyCharm. Pada jendela awal, pilih opsi

"New Project" untuk membuat proyek baru.

 Anda akan diminta untuk memilih lokasi penyimpanan proyek.

Tentukan direktori tempat Anda ingin menyimpan proyek Anda.

 Selanjutnya, pilih Python Interpreter. Jika Python sudah terinstal di

sistem Anda, PyCharm biasanya akan mendeteksinya secara otomatis.

Jika tidak, Anda dapat menambahkannya secara manual dengan

memilih lokasi instalasi Python.

3. Pengaturan Lingkungan Virtual (Virtual Environment – venv)

 Menggunakan virtual environment sangat disarankan untuk mengisolasi

dependensi proyek Anda agar tidak bercampur dengan proyek lain.

 Saat membuat proyek baru, PyCharm akan menawarkan opsi untuk

membuat virtual environment. Pilih opsi ini untuk membuat venv.

 Jika Anda sudah membuat proyek tanpa virtual environment, Anda

masih bisa menambahkannya.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 1: Pengenalan Algoritma dan Pemrograman 15

Caranya, buka menu File -> Settings -> Project: [nama proyek] ->

Python Interpreter, lalu pilih opsi untuk membuat virtual environment

baru.

 PyCharm akan secara otomatis mengatur lingkungan ini dan Anda bisa

langsung mulai menggunakannya.

4. Memulai Pemrograman

 Setelah semua pengaturan selesai, Anda dapat mulai menulis kode

Python Anda. Buat file Python baru dengan klik kanan pada direktori

proyek, pilih New -> Python File, beri nama file tersebut, dan mulai

menulis kode Anda.

 Untuk menjalankan kode, Anda bisa klik kanan pada file dan pilih

"Run", atau menggunakan tombol hijau kecil di pojok kanan atas

jendela PyCharm.

d. Struktur Dasar Program Python

Program Python biasanya dimulai dengan menuliskan perintah atau kode yang

akan dijalankan. Struktur dasar dari program Python terdiri dari beberapa

elemen berikut:

1. Komentar: Digunakan untuk menambahkan deskripsi atau catatan dalam

kode. Komentar diawali dengan tanda ‘#’.

2. Pernyataan atau Statement: Python menjalankan perintah berdasarkan

pernyataan yang diberikan. Contohnya adalah pernyataan untuk mencetak

teks di layar.

3. Variable dan Tipe Data: Variabel digunakan untuk menyimpan data, yang

bisa berupa berbagai tipe seperti angka, teks, atau daftar.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 1: Pengenalan Algoritma dan Pemrograman 16

4. Fungsi: Fungsi adalah blok kode yang dapat digunakan kembali, yang

melakukan tugas tertentu. Fungsi dalam Python didefinisikan menggunakan

kata kunci ‘def’.

5. Kondisi dan Pengulangan: Python mendukung struktur kontrol seperti

pernyataan if-else dan loop seperti for dan while.

6. Input dan Output: Python menyediakan cara untuk mengambil input dari

pengguna dan menampilkan output.

B. Latihan/Contoh

Latihan 1: Menulis algoritma untuk aktivitas sehari-hari.

1. Tujuan: Latihan ini dirancang untuk membantu mahasiswa memahami konsep

dasar algoritma dengan mengaplikasikannya pada aktivitas sehari-hari. Mahasiswa

akan belajar bagaimana memecah suatu tugas menjadi langkah-langkah terstruktur

yang dapat diikuti oleh komputer atau orang lain.

2. Instruksi:

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 1: Pengenalan Algoritma dan Pemrograman 17

a. Pilih Aktivitas: Pilih satu aktivitas sehari-hari yang sederhana dan sering

dilakukan, misalnya:

 Membuat secangkir teh.

 Mengunci pintu.

 Mengirim pesan teks.

b. Tulis Algoritma: Buat algoritma yang terdiri dari langkah-langkah yang jelas

dan berurutan untuk menyelesaikan aktivitas tersebut. Pastikan setiap langkah

ditulis dengan detail sehingga bisa diikuti tanpa kebingungan.

3. Contoh:

Algoritma untuk membuat secangkir teh:

 Ambil teko dan isi dengan air.

 Panaskan air hingga mendidih.

 Ambil sebuah cangkir.

 Masukkan satu kantong teh ke dalam cangkir.

 Tuangkan air mendidih ke dalam cangkir.

 Tunggu selama 3-5 menit hingga teh menyeduh.

 Angkat kantong teh dari cangkir.

 Tambahkan gula atau susu sesuai selera.

 Aduk teh dengan sendok.

 Teh siap untuk diminum.

4. Diskusi: Setelah menyusun algoritma, diskusikan dengan teman sekelas atau dosen

mengenai bagaimana algoritma tersebut dapat disederhanakan atau ditingkatkan.

Apakah ada langkah yang bisa dihilangkan atau dijelaskan lebih baik?

5. Hasil yang Diharapkan : Mahasiswa akan dapat memecah suatu tugas menjadi

langkah-langkah yang dapat diikuti dan mengerti pentingnya ketepatan dan

kejelasan dalam menyusun algoritma.

Latihan 2: Menulis dan menjalankan program "Hello, World!" dalam Python.

1. Tujuan : Latihan ini dirancang untuk memperkenalkan mahasiswa pada bahasa

pemrograman Python dan lingkungan pengembangannya. Mahasiswa akan belajar

bagaimana menulis dan menjalankan program sederhana menggunakan Python.

2. Instruksi

a. Siapkan Lingkungan Pengembangan:

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 1: Pengenalan Algoritma dan Pemrograman 18

 Pastikan Python telah terinstal di komputer.

 Buka PyCharm (atau IDE Python lain yang digunakan).

 Buat proyek baru di PyCharm dengan nama "Latihan_Hello_World".

b. Menulis Program:

 Dalam proyek baru, buat file Python baru dengan nama ‘hello_world.py’.

 Ketik kode berikut ke dalam file tersebut:

print("Hello, World!")

 Penjelasan Kode:

 ‘print()’ adalah fungsi bawaan Python yang digunakan untuk

menampilkan teks atau output lainnya ke layar.

 "Hello, World!" adalah string yang akan dicetak oleh program.

c. Menjalankan Program:

 Klik tombol 'Run' di PyCharm atau jalankan file ‘hello_world.py’ melalui

terminal.

 Lihat hasilnya di konsol: program akan menampilkan teks ‘Hello, World!.’

d. Modifikasi Program:

 Coba modifikasi teks yang ditampilkan oleh program menjadi nama

mahasiswa atau pesan lain.

 Contoh modifikasi:

print("Selamat datang di dunia pemrograman, [Nama Anda]!")

 Jalankan kembali program untuk melihat perubahan yang terjadi.

e. Diskusi:

 Diskusikan pentingnya menulis program "Hello, World!" sebagai langkah

pertama dalam mempelajari bahasa pemrograman baru.

 Bagaimana modifikasi program dapat membantu dalam memahami cara

kerja dasar Python?

3. Hasil yang diharapkan : Mahasiswa akan familiar dengan menulis dan

menjalankan program dasar di Python, serta memahami proses pengembangan

perangkat lunak dari ide sederhana hingga eksekusi.

C. Rangkuman

Algoritma adalah langkah-langkah sistematis untuk menyelesaikan masalah, mulai

dari mengidentifikasi masalah hingga penyelesaian akhir, dengan contoh seperti resep

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 1: Pengenalan Algoritma dan Pemrograman 19

masakan dan teknik pencarian data seperti pencarian linear dan biner. Pemrograman,

proses penulisan kode untuk mengembangkan perangkat lunak, menggunakan bahasa

pemrograman seperti Python, yang terkenal dengan sintaks yang mudah dan pustaka

standar yang luas. Python, dikembangkan oleh Guido van Rossum, adalah bahasa yang

cocok untuk pemula dan digunakan dalam berbagai aplikasi. Untuk pemrograman dasar,

pemahaman algoritma seperti bubble sort dan merge sort serta implementasi kode Python

sederhana seperti pertukaran variabel dan pencarian linear sangat penting dalam

membangun keterampilan dasar pemrograman.

D. Tugas

Tugas 1 : Menulis

Tuliskan algoritma untuk aktivitas sehari-hari seperti:

1. Menyiapkan sarapan (misalnya membuat sandwich).

2. Mengatur jadwal harian (misalnya, rutinitas pagi).

*catatan “Tulis algoritma dalam bentuk langkah-langkah terstruktur yang jelas.”

Tugas 2 : Coding

1. Implementasi Algoritma Pencarian Linear

Deskripsi: Buatlah sebuah program Python yang melakukan pencarian linear pada

sebuah daftar angka. Program ini harus menerima daftar angka dan nilai yang ingin

dicari sebagai input, lalu mengembalikan indeks dari nilai yang dicari jika

ditemukan, atau -1 jika tidak ditemukan.

Petunjuk:

1. Implementasikan fungsi ‘pencarian_linear(data, target)’ yang menerima dua

parameter: ‘data’ (daftar angka) dan ‘target’ (angka yang dicari).

2. Fungsi harus mengembalikan indeks dari ‘target’ dalam ‘data’ jika

ditemukan, atau -1 jika tidak ditemukan.

3. Tambahkan beberapa contoh pengujian untuk memastikan fungsi bekerja

dengan baik.

2. Implementasi Algoritma Bubble Sort

Deskripsi: Buatlah sebuah program Python yang mengurutkan sebuah daftar angka

menggunakan algoritma bubble sort. Program ini harus menerima daftar angka

sebagai input dan mengembalikan daftar yang sudah terurut.

Petunjuk:

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 1: Pengenalan Algoritma dan Pemrograman 20

1. Implementasikan fungsi ‘bubble_sort(data)’ yang menerima satu parameter:

‘data’ (daftar angka).

2. Fungsi harus mengurutkan ‘data’ menggunakan algoritma bubble sort dan

mengembalikan daftar yang sudah terurut.

3. Tambahkan beberapa contoh pengujian untuk memastikan fungsi bekerja

dengan baik.

E. Pustaka

Kadir, A. (2016). Dasar-Dasar Algoritma. Yogyakarta: Andi Offset.

Lutz, M. (2013). Learning Python. O'Reilly Media.

Mulyono, D. (2018). Pemrograman Komputer dengan C dan Python. Yogyakarta:

Graha Ilmu.

Purnomo, H. (2020). Belajar Python untuk Pemula. Bandung: Informatika.

Suryadi, S. (2021). Pemrograman Dasar dengan Python. Bandung: CV. Alfabeta.

Van Rossum, G., & Drake, F. L. (2009). The Python Language Reference Manual.

Beaverton: Python Software Foundation.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 2: Array & Linked List 21

Modul 2: Array & Linked List

 Modul ini dirancang untuk membantu mahasiswa memahami dua struktur data

fundamental dalam pemrograman, yaitu Array dan Linked List, dengan penekanan pada

konsep, implementasi, dan aplikasinya dalam berbagai masalah komputasi. Modul ini

memiliki relevansi yang signifikan, karena pemahaman mendalam tentang Array dan

Linked List merupakan dasar yang penting untuk mempelajari struktur data yang lebih

kompleks dan teknik pemrograman lanjutan. Dengan mengikuti modul ini, mahasiswa

diharapkan mampu menguasai konsep dasar Array dan Linked List, memahami

bagaimana kedua struktur data ini bekerja dalam menyimpan dan mengorganisir data,

serta mampu menerapkannya dalam pengembangan program-program yang lebih

efisien dan efektif. Penguasaan materi ini merupakan langkah awal yang esensial dalam

membangun keterampilan pemrograman yang lebih mendalam dan kemampuan analisis

algoritma.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 2: Array & Linked List 22

A. Penyajian Materi Array

1. Array

Array adalah struktur data yang paling umum dan tersedia di hampir

semua bahasa pemrograman. Karena popularitasnya, array menjadi titik awal yang

baik untuk mempelajari struktur data dan memahami hubungan antara

pemrograman berorientasi objek dan struktur data. Dalam bab ini, kita akan

mempelajari array di Java dan membuat kelas array sederhana. Kita juga akan

melihat array yang disusun dalam urutan tertentu, di mana data disimpan dalam

urutan menaik (atau menurun) berdasarkan kunci. Pengaturan ini memungkinkan

kita mencari data dengan cepat menggunakan metode pencarian biner.

Array adalah struktur dasar yang digunakan untuk menyimpan dan

mengakses kumpulan data. Array bisa membantu menyelesaikan berbagai

masalah dalam ilmu komputer. Sebagian besar bahasa pemrograman menyediakan

array sebagai tipe data dasar dan memungkinkan pembuatan array dengan

berbagai dimensi. Dalam bab ini, kita akan mulai dengan array satu dimensi, lalu

menggunakannya untuk membuat array dua dimensi dan struktur matriks.

Array adalah variabel khusus yang dapat menyimpan beberapa nilai

sekaligus. Misalnya, jika kita ingin menyimpan daftar nama sepeda motor, kita

bisa menggunakan array untuk menyimpan semua nama dalam satu variabel.

Tanpa array, kita harus mendeklarasikan variabel satu per satu, seperti ini:

SepedaMotor1 = "Ninja"

SepedaMotor2 = "Mio"

SepedaMotor3 = "Nmax"

Namun, jika kita ingin menyimpan dan mengakses banyak data, misalnya 500

jenis sepeda motor di sebuah showroom, akan lebih efisien menggunakan array.

Array memungkinkan kita menyimpan semua data dalam satu variabel dan

mengaksesnya dengan mudah menggunakan indeks, yaitu posisi elemen dalam

array yang dimulai dari 0, 1, 2, dan seterusnya.

2. Pengaksesan Elemen Array

a. Mengakses dan Mengubah Elemen dalam Array

Dalam Python, elemen dalam sebuah array diakses dengan menggunakan

indeks. Indeks ini adalah nomor urut dari elemen dalam array, dimulai dari 0

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 2: Array & Linked List 23

untuk elemen pertama. Misalnya, jika kita ingin mengakses data dari elemen

pertama array ‘mobil’, kita bisa menulis:

Jika ingin mengubah nilai elemen pertama pada array ‘mobil’ menjadi

"Honda", kita bisa menulis:

b. Menghitung Panjang Array

Untuk mengetahui jumlah elemen dalam array, kita bisa menggunakan fungsi

‘len()’. Fungsi ini mengembalikan jumlah elemen dalam array. Misalnya,

untuk menghitung jumlah elemen dalam array ‘mobil’:

c. Looping Melalui Elemen Array

Untuk melakukan looping melalui semua elemen dalam array, kita bisa

menggunakan loop ‘for’. Misalnya, untuk mencetak setiap elemen dalam

‘array mobil’:

d. Menambah Elemen ke dalam Array

Untuk menambahkan elemen baru ke dalam array, kita bisa menggunakan

metode ‘append()’. Contohnya, untuk menambahkan "Honda" ke array

‘mobil’:

e. Menghapus Elemen dari Array

Ada beberapa cara untuk menghapus elemen dari array. Salah satunya adalah

menggunakan metode ‘pop()’, yang menghapus elemen pada posisi tertentu.

Misalnya, untuk menghapus elemen kedua dalam array ‘mobil’:

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 2: Array & Linked List 24

Anda juga bisa menggunakan metode ‘remove()’ untuk menghapus elemen

berdasarkan nilainya. Misalnya, untuk menghapus elemen dengan nilai

"Volvo":

Catatan: Metode remove() hanya akan menghapus kemunculan pertama

dari nilai yang ditentukan.

f. Metode lain untuk manipulasi Array

Python menyediakan berbagai metode bawaan yang dapat digunakan untuk

memanipulasi list (array):

 append(): Menambahkan elemen di akhir list.

 clear(): Menghapus semua elemen dalam list.

 copy(): Membuat salinan dari list.

 count(): Menghitung jumlah elemen dengan nilai tertentu.

 index(): Mengembalikan posisi dari elemen pertama dengan nilai

tertentu.

 insert(): Menambahkan elemen pada posisi tertentu.

 pop(): Menghapus elemen pada posisi tertentu.

 remove(): Menghapus elemen pertama dengan nilai tertentu.

 reverse(): Membalik urutan elemen dalam list.

 sort(): Mengurutkan elemen dalam list.

Catatan: Python tidak memiliki dukungan bawaan untuk array seperti di

beberapa bahasa pemrograman lainnya, tetapi list di Python dapat digunakan

sebagai penggantinya.

3. Struktur Array

Pada tingkat perangkat keras, sebagian besar arsitektur komputer menyediakan

mekanisme untuk menyimpan dan mengakses array satu dimensi. Array satu

dimensi terdiri dari beberapa elemen yang disimpan bersebelahan dalam memori

dan memungkinkan akses langsung ke setiap elemen melalui indeks. Setiap array

diidentifikasi dengan satu nama, dan elemen-elemen dalam array dapat diakses

menggunakan indeks integer yang menunjukkan posisi elemen dalam array. Ini

mirip dengan notasi matematika seperti xix_ixi, di mana beberapa variabel

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 2: Array & Linked List 25

memiliki nama yang sama tetapi dibedakan oleh indeksnya. Dalam pemrograman,

indeks ini biasanya ditempatkan dalam tanda kurung siku setelah nama array,

seperti x[i].

Contoh: Struktur array satu dimensi yang terdiri dari 11 elemen bisa digambarkan

sebagai berikut.

Gambar Contoh array 1-D yang terdiri dari 11 elemen

a. Perbedaan antara array dan list di python

Meskipun array memiliki struktur yang mirip dengan list di Python, terdapat

dua perbedaan utama antara keduanya. Pertama, array memiliki jumlah

operasi yang lebih terbatas, yaitu hanya mencakup pembuatan, pembacaan,

dan penulisan nilai elemen tertentu. Sebaliknya, list di Python menyediakan

berbagai macam operasi untuk memanipulasi isinya. Kedua, ukuran array

bersifat tetap setelah dibuat, sementara list dapat bertambah atau berkurang

selama program berjalan.

b. Mengapa memilih array

Jika Python sudah menyediakan list yang fleksibel, mengapa masih perlu

membahas array? Jawabannya adalah bahwa kedua struktur data ini memiliki

kegunaannya masing-masing. Array lebih cocok untuk situasi di mana jumlah

elemen diketahui sebelumnya dan tidak berubah, sementara list lebih baik

digunakan ketika ukuran urutan data dapat berubah seiring waktu. Sebagai

contoh, jika Anda membutuhkan struktur data untuk menyimpan 100.000

elemen, menggunakan list mungkin akan mengalokasikan ruang dua kali lipat

dari yang sebenarnya diperlukan, yang bisa menjadi pemborosan memori.

Dalam kasus seperti ini, array adalah pilihan yang lebih efisien.

c. Operasi dasar pada array satu dimensi

 Membuat Array: Array(size): Membuat array satu dimensi dengan

jumlah elemen yang ditentukan oleh size. Setiap elemen diinisialisasi

dengan nilai None. Ukuran array harus lebih besar dari nol.

 Mengukur Panjang Array: length(): Mengembalikan jumlah elemen

dalam array.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 2: Array & Linked List 26

 Mengakses Nilai Elemen: getitem(index): Mengembalikan nilai yang

disimpan dalam array pada posisi yang ditentukan oleh index. Indeks

harus berada dalam rentang yang valid.

 Memodifikasi Elemen Array: setitem(index, value): Mengubah nilai

elemen pada posisi yang ditentukan oleh index menjadi value. Indeks

harus berada dalam rentang yang valid.

 Menghapus Isi Array: clearing(value): Mengosongkan array dengan

mengatur semua elemennya ke nilai tertentu.

 Membuat Iterator: iterator(): Menghasilkan iterator yang dapat

digunakan untuk menjelajahi elemen-elemen dalam array.

Meskipun array sering dianggap sebagai struktur fisik karena

diimplementasikan langsung pada tingkat perangkat keras, dalam banyak

kasus kita juga membutuhkannya sebagai tipe data abstrak (ADT) dengan

lebih banyak operasi tambahan seperti iterator dan pengaturan ukuran array.

Dengan menyediakan abstraksi pada tingkat yang lebih tinggi ini, kita bisa

lebih fleksibel dalam mengimplementasikan algoritma yang efisien.

4. Implementasi array

Python adalah bahasa pemrograman tingkat tinggi yang ditulis

menggunakan bahasa C. C, sebagai bahasa pemrograman yang kuat, menawarkan

sintaks yang memungkinkan akses penuh ke fungsionalitas perangkat keras yang

mendasarinya. Meskipun C menyediakan kemampuan ini, sintaksnya bisa terasa

rumit dibandingkan dengan Python, terutama bagi programmer Python yang

belum berpengalaman dengan C.

Banyak tipe data dan kelas di Python sebenarnya diimplementasikan

menggunakan tipe data yang sesuai dari bahasa C. Meskipun Python tidak secara

langsung menyediakan struktur array sebagai bagian dari bahasanya, ia

menawarkan modul seperti ctypes dalam Pustaka Standar Python. Modul ini

memungkinkan akses ke tipe data dan fungsi dari bahasa C, serta dapat digunakan

untuk berinteraksi dengan berbagai koleksi data seperti string, list, tuple, dan

kamus di Python.

Namun, modul ctypes tidak dirancang untuk penggunaan sehari-hari

dalam pengembangan aplikasi Python. Sebaliknya, modul ini lebih banyak

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 2: Array & Linked List 27

digunakan oleh pengembang modul Python untuk menciptakan modul yang lebih

portabel dengan menjembatani antara Python dan C.

Sebagian besar fungsionalitas yang ditawarkan oleh ctypes memerlukan

pengetahuan tentang bahasa C. Oleh karena itu, teknik untuk

mengimplementasikan array menggunakan ctypes biasanya tidak digunakan

langsung dalam program Python sehari-hari. Sebagai gantinya, kita dapat

menggunakan teknik ini dalam kelas array kita sendiri untuk menyediakan

fungsionalitas yang diperlukan sesuai dengan konsep Abstract Data Type (ADT)

dari array, dengan menyembunyikan detail implementasi di dalam kelas.

Array adalah struktur data yang dapat menyimpan sejumlah item dengan

tipe yang sama. Banyak struktur data menggunakan array untuk

mengimplementasikan algoritma mereka. Berikut adalah istilah-istilah penting

dan operasi dasar yang terkait dengan array:

 Elemen: Setiap item yang disimpan dalam array disebut elemen.

 Indeks: Setiap lokasi elemen dalam array memiliki indeks numerik yang

digunakan untuk mengidentifikasi elemen tersebut.

Operasi Dasar pada Array:

1. Traverse: Mencetak semua elemen dalam array satu per satu.

2. Penyisipan: Menambahkan elemen pada indeks tertentu.

3. Penghapusan: Menghapus elemen pada indeks tertentu.

4. Pencarian: Mencari elemen berdasarkan indeks atau nilai.

5. Perbarui: Memperbarui elemen pada indeks tertentu

B. Penyajian Materi Linked List

1. Linked List

Linked list merupakan salah satu struktur data fundamental dalam bidang

ilmu komputer. Struktur ini memungkinkan programmer untuk menyimpan data

dengan fleksibilitas tinggi sesuai kebutuhan. Berbeda dengan array, linked list

memiliki kemampuan untuk mengalokasikan memori secara dinamis selama

program berjalan, sehingga lebih efisien dalam penggunaan sumber daya. Dalam

linked list, data disimpan dalam sebuah struktur yang terdiri dari objek-objek yang

saling terhubung melalui tautan atau pointer. Setiap elemen dalam linked list

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 2: Array & Linked List 28

disebut sebagai node, yang berisi dua bagian utama: data yang disimpan dan

referensi ke node berikutnya dalam urutan.

Ketika menggunakan array, programmer harus menentukan ukuran array

di awal, yang sering kali berakibat pada alokasi memori yang tidak efisien,

terutama jika ukuran array yang dibutuhkan sulit diprediksi. Misalnya, alokasi

array sebesar 100 elemen mungkin terlalu besar atau terlalu kecil tergantung pada

kebutuhan program. Array bersifat statis, sehingga tidak dapat menyesuaikan diri

dengan perubahan jumlah data yang disimpan. Sebagai solusinya, linked list

menawarkan fleksibilitas dengan memungkinkan penambahan atau pengurangan

elemen secara dinamis selama waktu proses.

Linked list dapat dianalogikan dengan rangkaian gerbong kereta api.

Mesin kereta mewakili kepala linked list, gerbong-gerbong mewakili data yang

disimpan, dan pengait antara gerbong adalah pointer yang menghubungkan satu

node ke node berikutnya. Programmer membaca data dalam linked list seperti

seorang kondektur yang memeriksa tiket dari satu gerbong ke gerbong berikutnya,

mulai dari kepala linked list hingga ke elemen terakhir, yang biasanya ditandai

dengan pointer yang menunjuk ke nilai NULL.

a. Efisiensi dan Penggunaan Linked List

Meskipun linked list menawarkan fleksibilitas yang lebih tinggi

dibandingkan array, terdapat beberapa kelemahan yang perlu diperhatikan.

Salah satu kelemahan utama adalah waktu akses data. Dalam array, data pada

indeks ke-n dapat diakses secara langsung, sedangkan pada linked list, untuk

mengakses data ke-n, programmer harus melintasi setiap node dari awal

hingga mencapai node yang diinginkan, yang memerlukan waktu O(n).

Secara umum, linked list terdiri dari elemen-elemen yang saling

terhubung, dan setiap elemen terdiri dari dua bagian: infotype (menyimpan

informasi) dan next (menyimpan alamat elemen berikutnya). Sebagai contoh,

jika L adalah linked list dan P adalah pointer, maka alamat elemen pertama

dalam list L dapat diakses melalui pointer P. Berikut ini adalah beberapa

kondisi dan notasi penting dalam linked list:

 List L adalah list kosong jika First(L) = Nil.

 Elemen terakhir dalam linked list dapat dikenali jika Next(Last) = Nil.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 2: Array & Linked List 29

Dalam konteks linked list, Nil adalah pengganti dari Null, dan ini

biasanya didefinisikan dengan #define Nil Null.

b. Implementasi LIFO dan FIFO dalam Linked List

Dalam implementasi linked list, terdapat dua metode umum yaitu

LIFO (Last In First Out) dan FIFO (First In First Out):

 LIFO (Last In First Out): Metode ini mengatur data sehingga elemen

yang terakhir dimasukkan akan menjadi elemen yang pertama diakses.

Ini mirip dengan cara tumpukan barang, di mana barang yang ditumpuk

paling atas akan diambil terlebih dahulu. Dalam linked list, penambahan

elemen baru dilakukan pada simpul terakhir, dikenal dengan istilah

INSERT.

 FIFO (First In First Out): Metode ini mengatur data sehingga elemen

yang pertama kali masuk akan menjadi elemen yang pertama kali

diakses. Ini dapat dianalogikan dengan antrean orang membeli tiket, di

mana orang yang pertama kali mengantri akan dilayani terlebih dahulu.

Dalam linked list dengan metode FIFO, penambahan elemen dilakukan

pada simpul yang berada di depan.

2. Node Dalam Linked List

Node adalah elemen dasar dalam struktur data Linked List yang berfungsi sebagai

wadah penyimpan data dan memiliki pointer untuk merujuk ke node lain dalam

daftar yang saling terhubung. Struktur sederhana dari node ini dapat digambarkan

seperti berikut.

Gambar 1. Struktur Sederhana dari Node

a. Node Linked List dalam Python

Untuk mengimplementasikan node dalam Python, kita dapat membuat kelas

‘Node’ yang memiliki dua atribut, yaitu ‘data’ untuk menyimpan informasi

dan ‘next’ yang merupakan pointer ke node berikutnya dalam Linked List.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 2: Array & Linked List 30

Linked List pada dasarnya adalah kumpulan dari beberapa node yang saling

terhubung. Ada satu pointer khusus yang disebut head yang menunjuk ke

node pertama dalam Linked List. Jika Linked List kosong, pointer ini akan

menunjuk ke ‘None’. Ilustrasi di bawah ini menunjukkan Linked List yang

terdiri dari tiga node.

Gambar 1.2 Ilustrasi Linked List yang terdiri dari tiga node

Dalam Python, Linked List kosong didefinisikan sebagai berikut, di mana

pointer head menunjuk ke ‘None’.

b. Menyisipkan Elemen dalam Linked List

Penyisipan elemen dalam Linked List dapat dilakukan pada beberapa posisi:

di awal, di akhir, atau di posisi tertentu di antara node-node yang ada. Untuk

menyisipkan elemen di awal Linked List, kita pertama-tama membuat node

baru dengan data yang diinginkan. Node baru ini kemudian akan diarahkan ke

node pertama yang saat ini ditunjuk oleh pointer head. Setelah itu, pointer

head akan di-update untuk menunjuk ke node baru.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 2: Array & Linked List 31

Untuk menyisipkan elemen di akhir Linked List, kita perlu menemukan node

terakhir, yaitu node yang pointer ‘next’-nya menunjuk ke None. Setelah

ditemukan, kita buat ‘node’ baru dan mengarahkan pointer ‘next’ dari node

terakhir ke node baru tersebut.

Penyisipan elemen pada posisi tertentu dilakukan dengan menghitung posisi

node hingga mencapai posisi yang diinginkan. Setelah itu, node baru dibuat

dan diintegrasikan ke dalam Linked List dengan meng-update pointer yang

relevan.

c. Melintasi Linked List

Proses melintasi Linked List dilakukan dengan memulai dari node pertama

(yang ditunjuk oleh pointer head), mencetak data, dan kemudian bergerak ke

node berikutnya hingga mencapai node terakhir (di mana pointer ‘next’

adalah ‘None’).

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 2: Array & Linked List 32

d. Menghapus Node

Penghapusan node dalam Linked List dapat dilakukan di awal, di akhir, atau

di posisi tertentu di antara node-node. Untuk menghapus node pertama, kita

periksa terlebih dahulu apakah Linked List kosong dengan melihat apakah

pointer head menunjuk ke ‘None’. Jika kosong, exception akan dilempar

dengan pesan bahwa Linked List kosong. Jika tidak, node pertama dihapus

dengan mengalihkan pointer head ke node berikutnya.

Untuk menghapus node terakhir, kita perlu melintasi Linked List hingga

menemukan node yang ‘next’-nya menunjuk ke ‘None’. Node ini kemudian

dihapus.

Untuk menghapus node di posisi tertentu, kita melintasi Linked List hingga

mencapai node sebelum posisi yang diinginkan. Setelah itu, node pada posisi

tersebut dihapus dengan meng-update pointer ‘next’.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 2: Array & Linked List 33

3. Implementasi Linked List di Python

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 2: Array & Linked List 34

Penjelasan Kode:

1. Node Class: Setiap elemen dalam linked list adalah objek dari kelas Node.

Setiap Node memiliki dua atribut: data (untuk menyimpan nilai) dan next

(untuk menunjuk ke node berikutnya).

2. LinkedList Class:

• append(data): Menambahkan node baru di akhir linked list.

• display(): Menampilkan elemen-elemen dalam linked list.

• insert_at_beginning(data): Menyisipkan node baru di awal linked list.

• insert_after_node(prev_node, data): Menyisipkan node baru setelah

node tertentu.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 2: Array & Linked List 35

• delete_node(key): Menghapus node berdasarkan nilai data (key).

3. Penggunaan:

• Pertama, linked list dibuat kosong.

• Kemudian, beberapa node ditambahkan menggunakan append.

• Node juga bisa ditambahkan di awal linked list dengan

insert_at_beginning, atau setelah node tertentu dengan

insert_after_node.

• Node dapat dihapus menggunakan delete_node.

C. Latihan/contoh

Latihan 1: Array Sederhana

Tujuan: Mahasiswa memahami bagaimana cara mendeklarasikan, mengisi, dan

mengakses elemen dari sebuah array.

Cara Kerja:

a. Deklarasi Array: angka = [10, 20, 30, 40, 50] membuat array yang

menyimpan lima angka.

b. Mengakses Elemen: angka[0] mengakses elemen pertama, sedangkan angka[4]

mengakses elemen terakhir.

c. Mengubah Elemen: angka[2] = 35 mengubah elemen ketiga dari 30 menjadi 35.

d. Menambahkan Elemen: angka.append(60) menambahkan angka 60 ke akhir

array.

Latihan 2: Linked List Sederhana

Tujuan: Mahasiswa memahami bagaimana cara membuat, menambah, dan menampilkan

elemen dalam linked list menggunakan Python.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 2: Array & Linked List 36

Cara Kerja:

a. Node Class: Node adalah class yang merepresentasikan satu elemen dari linked list

yang memiliki data dan next untuk menunjuk ke node berikutnya.

b. Linked List Class: LinkedList mengelola node-node tersebut. self.head

menunjuk ke node pertama dalam linked list.

c. Menambah Elemen: append menambahkan node baru di akhir linked list.

 Jika linked list kosong (self.head is None), node baru akan menjadi head.

 Jika tidak, kita mencari node terakhir (current.next bernilai None) dan

menambahkan node baru di akhir.

d. Menampilkan Elemen: display memulai dari head dan mencetak setiap elemen

hingga mencapai node terakhir (di mana current.next adalah None).

D. Rangkuman

Array adalah struktur data dasar yang menyimpan kumpulan elemen dengan

tipe yang sama, memungkinkan akses cepat dan efisien menggunakan indeks numerik.

Array dapat bersifat satu dimensi atau lebih, seperti array dua dimensi yang

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 2: Array & Linked List 37

membentuk matriks. Dalam Python, array dapat diakses dan dimodifikasi dengan

indeks, dan beberapa metode bawaan seperti append(), pop(), dan remove()

memungkinkan manipulasi elemen. Meskipun Python tidak memiliki tipe array

khusus, struktur list di Python sering digunakan untuk tujuan ini, dengan perbedaan

utama bahwa array memiliki ukuran tetap sedangkan list dapat berubah ukuran.

Struktur array di tingkat perangkat keras umumnya berbentuk array satu dimensi

dengan elemen yang disimpan secara bersebelahan dalam memori.

Sementara itu, linked list adalah struktur data yang terdiri dari elemen-elemen

yang disebut node, di mana setiap node menyimpan data dan pointer ke node

berikutnya. Linked list memungkinkan alokasi memori dinamis dan efisien,

memfasilitasi penambahan atau pengurangan elemen secara fleksibel. Dalam linked

list, ada dua metode umum untuk mengelola elemen: LIFO (Last In First Out) dan

FIFO (First In First Out). Node dalam linked list diimplementasikan dengan kelas

yang memiliki atribut untuk data dan pointer ke node berikutnya, memungkinkan

berbagai operasi seperti penyisipan, penghapusan, dan traversing elemen. Struktur ini

memberikan fleksibilitas lebih besar dibandingkan array, meskipun akses data

memerlukan waktu lebih lama karena harus melintasi setiap node dari awal hingga

akhir.

E. Tugas

1. Jelasakan Menurut Anda Perbedaan Array Dan linked list!

2. Jelaskan 3 Kelebihan Dan Kekurangan Suatu Program Array!

3. Jelaskan bagaian dan operasi-operasi pada liked List!

4. Buatlah contoh array dalam pemrograman Python!

5. Buatlah lisked list dengan pemrograman python!

F. Pustaka

Amanulhaq, A. A. (2021). Implementasi Algoritma Image Hashing dan Hamming

Distance untuk Deteksi Kemiripan Gambar. Repository ITS.

Agarwal, B., & Agarwal, B. (2018). Hands-On Data Structures and Algorithms with

Python. London: Packt Publishing.

Eriana, E. S., & Zain, A. (2021). Praktikum Algoritma dan Pemrograman. Tangerang

Selatan: Unpam Press.

Jodi, U. R. (2020). Algoritma dan Struktur Data. [Publisher Information].

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 2: Array & Linked List 38

Katahman, M. A., & Fathurrahman, M. (2021). Pembangunan Aplikasi Realiti

Terimbuh untuk Pengenalan Struktur Data. Information Technology and

Computer Science.

Nasrullah, A. H. (2021). Implementasi Algoritma Decision Tree untuk Klasifikasi

Produk Laris. Jurnal Ilmiah Ilmu Komputer I.

Qi, P., Zhang, Y., Bolton, J., & Manning, C. D. (2020). Stanza: A Python Natural

Language Processing Toolkit for Many Human Languages. [Conference or

Journal Name].

Sianipar, R. H. (2013). Pemrograman & Struktur Data C: Belajar dari Contoh untuk

Programmer Pemula Maupun Berpengalaman. Penerbit Informatika.

Thanaki, J. (2017). Python Natural Language Processing. Mumbai: Packt Publishing.

Zein, A. (2018). Pendeteksian Kantuk Secara Real Time Menggunakan Pustaka

OpenCV dan Dlib Python. Sainstech: Jurnal Penelitian dan Pengkajian Sains

dan Teknologi.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 3: Algoritma Percabangan 39

Modul 3: Algoritma Percabangan

 Modul ini dirancang sebagai panduan komprehensif untuk memperkenalkan dan

mengajarkan konsep algoritma percabangan dalam dunia pemrograman, yang

merupakan salah satu dasar penting dalam pengambilan keputusan pada pengembangan

perangkat lunak. Modul ini memiliki relevansi tinggi bagi mahasiswa, terutama dalam

memahami bagaimana program dapat menentukan jalur eksekusi berdasarkan kondisi

tertentu, sehingga memungkinkan pengembangan aplikasi yang lebih dinamis dan

responsif terhadap berbagai skenario yang mungkin terjadi. Dengan mengikuti modul

ini, mahasiswa diharapkan mampu memahami dan mengimplementasikan berbagai

bentuk percabangan, seperti if, if-else, if-elif-else, dan if bersarang, dalam bahasa

pemrograman Python. Selain itu, mahasiswa juga akan belajar bagaimana cara

membuat program yang dapat menangani kondisi kompleks dengan lebih efisien, serta

bagaimana menyusun logika program yang memungkinkan penanganan berbagai

kondisi secara efektif.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 3: Algoritma Percabangan 40

A. Penyajian Materi

1. Pengertian Algoritma Percabangan

Dalam dunia pemrograman, kita seringkali dihadapkan pada berbagai jenis

persoalan yang memerlukan analisis lebih mendalam, terutama ketika persoalan

tersebut tidak sesederhana menjalankan serangkaian instruksi secara berurutan.

Pada persoalan yang lebih kompleks, seringkali kita harus mempertimbangkan

berbagai kemungkinan yang mungkin terjadi. Untuk setiap kemungkinan ini,

terdapat kondisi tertentu yang harus dipenuhi, serta tindakan atau instruksi yang

harus diambil ketika kondisi tersebut terpenuhi.

Proses ini disebut dengan istilah percabangan atau control flow.

Percabangan memungkinkan kita untuk menentukan jalur mana yang akan

diambil oleh program berdasarkan kondisi yang telah ditentukan. Dengan adanya

percabangan, instruksi tidak lagi dieksekusi secara linier, tetapi bergantung pada

kondisi yang ada.

Sebagai contoh, mari kita lihat bagaimana kita bisa menentukan apakah

suatu bilangan termasuk bilangan genap atau bilangan ganjil. Algoritma untuk

menentukan hal tersebut bisa dijelaskan sebagai berikut:

1. Mulai.

2. Masukkan suatu bilangan, misalnya bilangan Y.

3. Jika bilangan Y habis dibagi dua, lanjutkan ke perintah keempat. Jika tidak,

lanjutkan ke perintah kelima.

4. Tulis “Y adalah bilangan genap”. Lanjutkan ke perintah keenam.

5. Tulis “Y adalah bilangan ganjil”.

6. Selesai.

Pada algoritma di atas, kita dapat melihat bahwa setelah perintah ketiga,

terdapat dua kemungkinan jalur yang dapat diambil oleh program. Jika bilangan Y

habis dibagi dua, maka program akan menjalankan perintah keempat, kemudian

langsung melompat ke perintah keenam tanpa menjalankan perintah kelima.

Sebaliknya, jika bilangan Y tidak habis dibagi dua, program akan langsung

melompat ke perintah kelima dan tidak menjalankan perintah keempat. Pada

akhirnya, kedua jalur tersebut akan bertemu kembali di perintah keenam, yang

menandakan bahwa proses algoritma telah selesai.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 3: Algoritma Percabangan 41

Dalam bahasa pemrograman Python, konsep percabangan

diimplementasikan menggunakan beberapa fungsi kondisi. Python memiliki

beberapa bentuk percabangan yang memungkinkan kita untuk mengekspresikan

berbagai kondisi dengan cara yang fleksibel dan mudah dipahami. Fungsi-fungsi

percabangan dalam Python antara lain:

1. ‘if’ : Digunakan untuk menjalankan suatu blok kode jika kondisi tertentu

terpenuhi.

2. ‘if, else’ : Digunakan ketika kita ingin mengeksekusi blok kode alternatif jika

kondisi dalam if tidak terpenuhi.

3. ‘if, elif, else’ : Digunakan ketika kita memiliki beberapa kondisi yang berbeda

dan ingin menjalankan blok kode yang sesuai dengan kondisi yang terpenuhi.

4. ‘if bersarang’ : Digunakan ketika kita perlu menulis percabangan di dalam

percabangan lain, memberikan fleksibilitas lebih dalam pengambilan

keputusan.

Dengan memahami berbagai jenis percabangan ini, kita dapat membuat

program yang lebih dinamis dan responsif terhadap berbagai situasi yang mungkin

terjadi selama eksekusi program. Hal ini sangat penting dalam pengembangan

aplikasi yang harus menangani banyak skenario dan kondisi yang berbeda.

2. Percabangan ‘if’

If bersarang adalah struktur di mana satu pernyataan if ditempatkan di

dalam pernyataan if lainnya. Ini berguna ketika kita memerlukan lebih dari satu

kondisi untuk memutuskan jalur eksekusi yang tepat. Dalam kondisi yang lebih

kompleks, kita mungkin perlu menggunakan beberapa lapisan if di dalam if.

Sintaks Dasar:

• Kondisi adalah sebuah ekspresi yang dievaluasi menjadi True atau False. Jika

kondisi tersebut benar (True), maka blok kode yang berada di bawah if akan

dieksekusi.

• Contoh sederhana dari kondisi adalah perbandingan, seperti ‘x > 0’, ‘y ==

10’, atau ‘a != b’.

Contoh:

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 3: Algoritma Percabangan 42

Pada contoh di atas, jika ‘bilangan’ lebih besar dari 0, maka program akan

mencetak bahwa ‘bilangan’ tersebut adalah bilangan positif. Jika ‘bilangan’ tidak

lebih besar dari 0 (misalnya negatif atau nol), maka tidak ada yang dicetak, dan

program akan melanjutkan ke instruksi berikutnya.

3. Percabangan ‘if-else’

Percabangan if-else digunakan ketika kita ingin menentukan dua jalur yang

berbeda berdasarkan kondisi yang diberikan. Jika kondisi tersebut benar, blok if

akan dieksekusi; jika kondisi tersebut salah, blok else akan dieksekusi.

Sintaks Dasar:

Pada dasarnya, struktur ini memberikan alternatif aksi jika kondisi tidak

terpenuhi.

Contoh:

Pada contoh ini, jika ‘bilangan’ lebih besar dari 0, program akan mencetak bahwa

‘bilangan’ adalah positif. Namun, jika ‘bilangan’ tidak lebih besar dari 0, maka

blok ‘else’ akan dieksekusi dan mencetak bahwa bilangan tersebut negatif atau

nol.

4. Percabangan ‘if-elif-else’

Struktur if-elif-else digunakan untuk memeriksa beberapa kondisi yang

berbeda secara berurutan. Ini memungkinkan kita untuk membuat program yang

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 3: Algoritma Percabangan 43

lebih fleksibel, di mana kita bisa memiliki lebih dari dua jalur eksekusi

berdasarkan berbagai kondisi.

Sintaks Dasar:

‘elif’ adalah singkatan dari "else if", yang memungkinkan kita untuk

menambahkan kondisi tambahan setelah kondisi pertama (if).

Contoh:

Pada contoh di atas, program memeriksa beberapa kondisi secara berurutan. Jika

‘nilai’ lebih besar atau sama dengan 90, program mencetak "Grade: A". Jika

‘nilai’ tidak lebih besar atau sama dengan 90, tetapi lebih besar atau sama dengan

80, maka program mencetak "Grade: B", dan seterusnya. Jika semua kondisi ‘if’

dan ‘elif’ salah, maka blok ‘else’ yang dijalankan.

5. Percabangan ‘if bersarang’/Nested if

‘If bersarang’ atau nested if adalah struktur di mana satu pernyataan ‘if’

ditempatkan di dalam pernyataan ‘if’ lainnya. Ini berguna ketika kita memerlukan

lebih dari satu kondisi untuk memutuskan jalur eksekusi yang tepat. Dalam

kondisi yang lebih kompleks, kita mungkin perlu menggunakan beberapa lapisan

‘if’ di dalam ‘if’.

Sintaks dasar:

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 3: Algoritma Percabangan 44

Struktur ini memungkinkan kita untuk menciptakan logika yang lebih kompleks

dan bertingkat.

Contoh:

Dalam contoh ini, pertama-tama program memeriksa apakah ‘umur’ lebih besar

atau sama dengan 17. Jika benar, program kemudian memeriksa apakah pengguna

memiliki KTP (‘punya_ktp’). Jika kedua kondisi ini benar, program mencetak

"Anda bisa membuat SIM". Jika salah satu kondisi tidak terpenuhi, maka program

memberikan pesan yang sesuai.

B. Latihan/contoh

Latihan 1 :

Buatlah program yang meminta pengguna memasukkan sebuah bilangan, kemudian

tentukan apakah bilangan tersebut positif, negatif, atau nol menggunakan percabangan

‘if-elif-else’.

Cara dan Petunjuk:

1. Minta pengguna memasukkan bilangan.

2. Gunakan percabangan if-elif-else untuk memeriksa apakah bilangan tersebut

lebih besar dari nol (positif), kurang dari nol (negatif), atau sama dengan nol.

3. Tampilkan hasilnya kepada pengguna.

Contoh Penyelesaian

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 3: Algoritma Percabangan 45

Penjelasan:

• Program memeriksa apakah bilangan lebih besar dari nol untuk menentukan

bilangan positif.

• Jika tidak, program memeriksa apakah bilangan kurang dari nol untuk

menentukan bilangan negatif.

• Jika kedua kondisi tersebut salah, bilangan dianggap nol.

Hasil Output:

Output dari kode di atas akan tergantung pada nilai bilangan yang dimasukkan oleh

pengguna. Berikut adalah beberapa contoh hasil output berdasarkan berbagai input:

1. Jika pengguna memasukkan bilangan positif:

• Input: 5

• Output: 5 adalah bilangan positif

2. Jika pengguna memasukkan bilangan negatif:

• Input: -3

• Output: -3 adalah bilangan negatif

3. Jika pengguna memasukkan nol:

• Input: 0

• Output: 0 adalah nol

Program ini mengevaluasi bilangan yang dimasukkan dan mencetak apakah bilangan

tersebut positif, negatif, atau nol.

Latihan 2 :

Buatlah program yang meminta pengguna memasukkan nilai suhu dalam Celsius dan

kemudian menentukan kategori suhu tersebut: dingin, normal, atau panas.

Cara dan Petunjuk:

1. Minta pengguna memasukkan nilai suhu dalam Celsius.

2. Gunakan percabangan if-elif-else untuk mengkategorikan suhu:

• if: suhu < 20, kategori "dingin"

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 3: Algoritma Percabangan 46

• elif: 20 <= suhu <= 30, kategori "normal"

• else: suhu > 30, kategori "panas"

3. Tampilkan kategori suhu kepada pengguna.

Contoh Penyelesaian:

Penjelasan:

• Program mengevaluasi suhu yang dimasukkan pengguna untuk menentukan

apakah suhu tersebut tergolong dingin, normal, atau panas.

• Kategori suhu kemudian ditampilkan berdasarkan kondisi yang terpenuhi.

Hasil Output:

Output dari kode di atas akan tergantung pada nilai suhu yang dimasukkan oleh

pengguna. Berikut adalah beberapa contoh hasil output berdasarkan berbagai input:

1. Jika pengguna memasukkan suhu kurang dari 20 derajat Celsius:

• Input: 15

• Output: Suhu dingin

2. Jika pengguna memasukkan suhu antara 20 dan 30 derajat Celsius:

• Input: 25

• Output: Suhu normal

3. Jika pengguna memasukkan suhu lebih dari 30 derajat Celsius:

• Input: 35

• Output: Suhu panas

Program ini mengevaluasi nilai suhu yang dimasukkan dan menentukan apakah suhu

tersebut tergolong dingin, normal, atau panas.

C. Rangkuman

Algoritma percabangan adalah proses di mana program dapat memilih jalur eksekusi

berdasarkan kondisi tertentu. Dalam Python, percabangan diimplementasikan

menggunakan struktur ‘if’, ‘if-else’, ‘if-elif-else’, dan ‘if bersarang’, yang memungkinkan

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 3: Algoritma Percabangan 47

program merespons berbagai situasi berbeda. Struktur ini membantu dalam pengambilan

keputusan yang lebih kompleks, seperti menentukan apakah suatu bilangan genap atau

ganjil, atau memberikan penilaian berdasarkan nilai. Dengan memahami dan menggunakan

percabangan, kita dapat menciptakan program yang lebih dinamis dan fleksibel.

D. Tugas

1. Jelaskan dengan kata-kata Anda sendiri apa yang dimaksud dengan percabangan

dalam algoritma dan mengapa percabangan ini penting dalam pemrograman. Sertakan

contoh sederhana yang menggambarkan penggunaan percabangan.

2. Bandingkan antara struktur percabangan ‘if, if-else’, dan ‘if-elif-else’. Dalam

situasi apa masing-masing struktur ini lebih cocok digunakan? Berikan contoh situasi

untuk setiap jenis percabangan.

3. Buatlah program yang meminta pengguna memasukkan nilai ujian dan menampilkan

grade berdasarkan nilai tersebut menggunakan percabangan if-elif-else. Gunakan

rentang nilai berikut:

• A: 90 - 100

• B: 80 - 89

• C: 70 - 79

• D: 60 - 69

• E: < 60

4. Buatlah program yang meminta pengguna memasukkan umur dan status kepemilikan

KTP. Program kemudian harus memeriksa apakah pengguna berusia di atas 17 tahun

dan memiliki KTP. Jika iya, tampilkan pesan bahwa mereka bisa membuat SIM; jika

tidak, tampilkan pesan yang sesuai.

E. Pustaka

Jubilee Enterprise. 2019. Python untuk Programer Pemula.

Pythonindo. 2019. Diakses pada 28 Juni 2020, dari

https://www.pythonindo.com/program-pertama-dengan-python/.

Rafiqi, Aufa. 2019. Belajar Algoritma Pemrograman dengan Python.

Swastika, W. 2018. Belajar Algoritma Pemrograman Dengan Menggunakan Python.

Tutorial Dasar Python untuk Pemula. Diakses pada 5 Juli 2021, dari

https://www.petanikode.com/tutorial/python/.

https://www.pythonindo.com/program-pertama-dengan-python/
https://www.petanikode.com/tutorial/python/

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 4: Perulangan (Looping) 48

Modul 4: Perulangan (Looping)

Modul ini dirancang sebagai panduan komprehensif mengenai algoritma perulangan

dalam pemrograman, menawarkan pemahaman mendalam tentang konsep "looping"

yang memungkinkan eksekusi kode secara berulang berdasarkan kondisi tertentu.

Modul ini memiliki relevansi besar dalam meningkatkan efisiensi dan kesederhanaan

kode, memungkinkan otomatisasi tugas repetitif yang kompleks tanpa perlu menulis

kode berulang kali. Dengan mengikuti modul ini, mahasiswa diharapkan mampu

memahami dan menerapkan berbagai jenis perulangan seperti ‘for’, ‘while’, dan

‘nested loop’, serta mengoptimalkan perulangan untuk meningkatkan performa

program mereka. Dilengkapi dengan contoh praktis dan teknik optimasi, modul ini

memberikan fondasi yang kuat untuk menyelesaikan berbagai masalah pemrograman

secara efektif dan efisien.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 4: Perulangan (Looping) 49

A. Penyajian Materi

1. Pengertian Algoritma Perulangan

Algoritma perulangan, atau yang sering disebut dengan "looping," adalah

sebuah konsep fundamental dalam pemrograman yang memungkinkan

eksekusi suatu blok kode berulang kali berdasarkan kondisi tertentu. Algoritma

perulangan digunakan untuk mengotomatisasi tugas-tugas yang berulang,

sehingga programmer tidak perlu menulis kode yang sama berulang kali.

Perulangan ini sangat berguna dalam situasi di mana suatu aksi perlu dilakukan

secara berkali-kali, misalnya untuk memproses setiap elemen dalam sebuah

kumpulan data, atau untuk mengulang suatu proses hingga tercapai kondisi

tertentu.

Perulangan memungkinkan sebuah program untuk mengeksekusi serangkaian

instruksi berulang kali hingga kondisi yang ditentukan terpenuhi. Dengan

demikian, program yang menggunakan perulangan dapat menjadi lebih singkat,

lebih mudah dipahami, dan lebih mudah di-maintain. Contohnya, jika Anda

ingin mencetak angka 1 hingga 1000, tanpa perulangan Anda harus menulis

1000 baris kode. Namun, dengan perulangan, Anda hanya perlu menulis

beberapa baris kode saja. Python menyediakan tiga cara utama untuk

melakukan perulangan, yaitu:

• For

• While

• Nested Loop (Perulangan Bersarang)

Ketigangan memiliki perbedaan pada segi Struktur dan Penggunaan, Kendali

Iterasi serta Efisiensi dan Kinerja

a. Struktur dan Penggunaan:

• For Loop: Digunakan ketika jumlah iterasi telah diketahui

sebelumnya. For loop sangat efektif untuk mengiterasi item dalam

sebuah koleksi seperti list, tuple, atau range.

• While Loop: Digunakan ketika jumlah iterasi tidak diketahui dan

iterasi harus terus berjalan hingga kondisi tertentu terpenuhi.

Perulangan ini lebih fleksibel karena kondisi dievaluasi di setiap

iterasi.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 4: Perulangan (Looping) 50

• Nested Loop: Merupakan perulangan di dalam perulangan lain.

Struktur ini digunakan untuk situasi di mana diperlukan iterasi ganda,

seperti dalam pemrosesan matriks atau array multidimensi.

b. Kendali Iterasi

• For Loop: Setiap iterasi pada for loop biasanya dikontrol oleh nilai

yang diambil dari sebuah koleksi atau range, sehingga iterasi berlanjut

secara otomatis hingga semua elemen telah diakses.

• While Loop: Kontrol iterasi pada while loop sepenuhnya ditentukan

oleh kondisi yang diberikan. Iterasi dapat terus berlangsung selama

kondisi bernilai True, sehingga memungkinkan kontrol yang lebih

dinamis.

• Nested Loop: Pada nested loop, kontrol iterasi bergantung pada loop

luar dan loop dalam. Loop dalam biasanya selesai sepenuhnya

sebelum loop luar melanjutkan ke iterasi berikutnya.

c. Efisiensi dan Kinerja

• For Loop: Umumnya lebih efisien dan lebih mudah diprediksi dalam

situasi di mana iterasi pada koleksi data tertentu diperlukan.

• While Loop: Meskipun lebih fleksibel, while loop bisa menjadi tidak

efisien jika kondisi tidak dikelola dengan baik, terutama jika tidak ada

mekanisme penghentian yang jelas.

• Nested Loop: Cenderung memerlukan lebih banyak sumber daya dan

bisa mengakibatkan penurunan kinerja jika digunakan secara

berlebihan, terutama ketika tingkat nesting terlalu dalam.

2. Jenis-jenis Perulangan

a. Perulangan For

Perulangan for digunakan untuk iterasi yang telah ditentukan

jumlahnya, misalnya iterasi melalui elemen-elemen dalam sebuah koleksi

seperti list, tuple, atau range. Ini adalah perulangan yang umum digunakan

ketika kita mengetahui dengan pasti jumlah langkah yang diperlukan.

Konsep ini memungkinkan kita untuk mengotomatisasi tugas berulang

dengan cara yang mudah dan efisien.

Sintaks Dasar:

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 4: Perulangan (Looping) 51

Penjelasan:

• ‘Variabel’: Variabel ini akan mengambil nilai dari setiap elemen

dalam koleksi pada setiap iterasi.

• ‘koleksi’: Ini bisa berupa ‘list’, ‘tuple’, ‘string’, atau objek lain

yang mendukung iterasi.

Contoh Implementasi:

Penjelasan Contoh:

Pada contoh di atas, ‘range(5’) menghasilkan urutan angka dari 0

hingga 4. Setiap angka dalam urutan tersebut diambil oleh variabel ‘i’,

dan blok kode di dalam ‘for’ dieksekusi lima kali, mencetak "Iterasi

ke-" diikuti oleh nilai ‘i’.

Penggunaan Lain:

Perulangan ‘for’ juga bisa digunakan untuk mengakses elemen

dalam koleksi yang lebih kompleks seperti ‘list’ yang berisi ‘tuple’:

Dalam kasus ini, setiap ‘tuple’ dalam ‘data’ dipisahkan ke dalam dua

variabel ‘angka’ dan ‘huruf’, dan kode di dalam perulangan ‘for’ akan

mencetak pasangan ini.

b. Perulangan While

While loop digunakan ketika kondisi tertentu harus terus diperiksa, dan

perulangan akan terus berjalan selama kondisi tersebut benar (True). Ini

sangat berguna dalam situasi di mana kita tidak tahu sebelumnya berapa

kali loop harus dijalankan, tetapi kita tahu kondisi yang harus dipenuhi

untuk menghentikan loop tersebut.

Sintaks Dasar:

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 4: Perulangan (Looping) 52

Penjelasan:

‘kondisi’: Kondisi ini dievaluasi sebelum setiap iterasi. Jika bernilai

‘True’, maka blok kode di dalam ‘while’ akan dieksekusi; jika ‘False’,

perulangan berhenti.

Contoh Implementasi :

Penjelasan Contoh:

Di sini, nilai x awalnya adalah 0. Selama x kurang dari 5,

perulangan akan terus berjalan, mencetak nilai x dan menambah x

sebesar 1 pada setiap iterasi. Ketika x mencapai 5, kondisi x < 5

menjadi False, dan perulangan berhenti.

Penggunaan dalam Kondisi yang Dinamis:

Perulangan while sangat berguna ketika kita tidak mengetahui

jumlah iterasi yang diperlukan sebelumnya. Misalnya, menghitung nilai

faktorial hingga mencapai angka tertentu:

Pada contoh di atas, perulangan berlanjut hingga nilai faktorial lebih

besar dari 1000.

c. Perulangan Bersarang (Nested Loop)

Perulangan bersarang terjadi ketika satu perulangan ditempatkan di dalam

perulangan lainnya. Ini sering digunakan untuk bekerja dengan struktur

data multidimensi, seperti matriks. Dengan menggunakan perulangan

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 4: Perulangan (Looping) 53

bersarang, kita bisa mengelola dan memanipulasi data dalam struktur yang

lebih kompleks secara lebih efisien.

Sintaks Dasar:

Penjelasan:

Perulangan luar (‘for variabel1 in koleksi1’) memulai iterasi pertama,

dan untuk setiap iterasi di perulangan luar, perulangan dalam (‘for

variabel2 in koleksi2’) akan dieksekusi sepenuhnya.

Contoh Implementasi:

Penjelasan Contoh:

Dalam contoh ini, untuk setiap nilai ‘i’ dalam ‘range(3)’, yang

menghasilkan 0 hingga 2, perulangan dalam akan berjalan untuk nilai

‘j’ dari ‘range(2)’ yang menghasilkan 0 hingga 1. Output akan

mencetak kombinasi nilai ‘i’ dan ‘j’.

Penggunaan untuk Matriks:

Perulangan bersarang sangat berguna dalam pengoperasian matriks,

misalnya, untuk menjumlahkan dua matriks:

Pada contoh ini, kita menambahkan dua matriks 2x2 menggunakan

perulangan bersarang, di mana hasilnya disimpan dalam matriks

‘hasil’.

d. Menggunakan Break dan Continue dalam Perulangan

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 4: Perulangan (Looping) 54

Kedua perintah ini digunakan untuk mengontrol aliran perulangan.

• Break: Digunakan untuk keluar dari perulangan sepenuhnya, terlepas

dari kondisi yang mengontrol perulangan.

• Continue: Melompat ke iterasi berikutnya dari perulangan, melewati

kode yang tersisa dalam iterasi saat ini.

Contoh Break:

Penjelasan Contoh:

Pada contoh ini, perulangan berhenti ketika i mencapai 5. Hanya nilai

dari 0 hingga 4 yang akan dicetak.

Contoh Continue:

Penjelasan Contoh:

Dalam contoh ini, perulangan akan melompati semua angka genap

karena perintah continue membuat program melompati iterasi saat i

bernilai genap. Hanya angka ganjil yang akan dicetak.

3. Optimasi Perulangan

Mengoptimalkan perulangan sangat penting untuk meningkatkan

efisiensi program, terutama saat menangani data dalam jumlah besar atau

menjalankan perulangan dalam waktu yang lama. Beberapa teknik optimasi

meliputi:

• Menghindari Perhitungan Ulang: Simpan hasil perhitungan yang

berulang kali digunakan dalam variabel. Ini akan mengurangi overhead

dan meningkatkan kecepatan eksekusi program.

• Menggunakan Loop Unrolling: Mempercepat eksekusi dengan

mengurangi overhead loop. Teknik ini melibatkan penulisan kode

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 4: Perulangan (Looping) 55

perulangan secara eksplisit untuk beberapa iterasi sekaligus, yang dapat

mengurangi jumlah perulangan yang sebenarnya dilakukan oleh CPU.

• Pemilihan Struktur Data yang Tepat: Memilih struktur data yang lebih

efisien untuk iterasi dapat meningkatkan kinerja program. Misalnya,

menggunakan set alih-alih list ketika tidak diperlukan urutan khusus,

karena set menawarkan pencarian yang lebih cepat.

B. Latihan/contoh

1. Latihan Soal 1 : Menghitung Jumlah Bilangan

Problem Statement: Hitung jumlah semua bilangan genap dari 1 hingga 100.

Implementasi:

Penjelasan Implementasi: Pada contoh ini, kita menggunakan perulangan for

untuk iterasi dari 1 hingga 100. Pada setiap iterasi, kita memeriksa apakah

angka tersebut genap (i % 2 == 0). Jika genap, kita menambahkan angka

tersebut ke variabel jumlah. Setelah perulangan selesai, jumlah total bilangan

genap dicetak.

2. Latihan 2 : Mencetak Pola Bintang

Problem Statement: Mencetak pola bintang seperti segitiga terbalik.

Implementasi:

Penjelasan Implementasi:

Di sini, kita menggunakan perulangan bersarang untuk mencetak pola bintang.

Perulangan luar mengontrol jumlah baris (baris), dan perulangan dalam

mencetak jumlah bintang yang sesuai di setiap baris. end="" digunakan untuk

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 4: Perulangan (Looping) 56

memastikan bahwa bintang-bintang dicetak pada baris yang sama, dan

print("") digunakan untuk berpindah ke baris berikutnya setelah setiap baris

selesai dicetak.

Variasi Implementasi: Pola bintang bisa dimodifikasi untuk mencetak

berbagai bentuk, seperti segitiga atau piramida, dengan mengubah logika

dalam perulangan.

3. Latihan 3: Menghitung Faktorial

Problem Statement: Menghitung faktorial dari sebuah angka yang diberikan.

Implementasi:

Penjelasan Implementasi:

Dalam contoh ini, faktorial dari sebuah angka n dihitung dengan mengalikan

semua angka dari 1 hingga n. Prosesnya menggunakan perulangan for:

• Inisialisasi: Variabel faktorial diinisialisasi dengan nilai 1, karena

faktorial adalah hasil perkalian dan dimulai dari 1.

• Perulangan: Perulangan dimulai dari angka 1 hingga n. Pada setiap

iterasi, nilai i akan dikalikan dengan faktorial, dan hasilnya disimpan

kembali ke dalam variabel faktorial.

• Output: Setelah perulangan selesai, hasil faktorial dicetak menggunakan

print.

Contoh Penghitungan:

Untuk n = 5, perhitungan faktorial berjalan sebagai berikut:

• Iterasi 1: faktorial = 1 * 1 = 1

• Iterasi 2: faktorial = 1 * 2 = 2

• Iterasi 3: faktorial = 2 * 3 = 6

• Iterasi 4: faktorial = 6 * 4 = 24

• Iterasi 5: faktorial = 24 * 5 = 120

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 4: Perulangan (Looping) 57

Jadi, hasil faktorial dari 5 adalah 120. Program akan mencetak: "Faktorial dari

5 adalah 120".

C. Rangkuman

Dalam modul ini, kita telah membahas perulangan sebagai alat kontrol aliran

program yang penting dalam pemrograman. Berbagai jenis perulangan seperti for,

while, dan perulangan bersarang telah dijelaskan secara detail, serta bagaimana

mengoptimalkan perulangan untuk meningkatkan efisiensi program. Contoh studi

kasus memberikan gambaran praktis tentang bagaimana konsep ini diterapkan

dalam situasi nyata, seperti menghitung jumlah bilangan genap, mencetak pola

bintang, dan menghitung faktorial. Melalui penerapan praktis ini, diharapkan

pemahaman tentang penggunaan perulangan dapat diperkuat, sehingga Anda dapat

mengimplementasikannya dengan lebih efektif dalam proyek-proyek pemrograman

Anda.

D. Tugas

1. Jelaskan perbedaan antara perulangan for dan while.

2. Apa yang dimaksud dengan perulangan bersarang? Berikan contoh kasus nyata

di mana perulangan bersarang diperlukan.

3. Bagaimana cara mengoptimalkan perulangan untuk menangani data dalam

jumlah besar?

4. Buat program yang mencetak bilangan prima antara 1 hingga 50.

5. Implementasikan program yang mencetak tabel perkalian menggunakan

perulangan.

E. Pustaka

Munir, Rinaldi. 2005. Algoritma dan Pemrograman dalam Bahasa Pascal dan C,

Buku 1, Edisi Ketiga, Penerbit Informatika Bandung.

Purnomo, H. (2020). Belajar Python untuk Pemula. Bandung: Informatika.

Pythonindo.2019. Diakses pada 30 Juli 2024, dari

https://www.pythonindo.com/program-pertama-dengan-python/.

Suryadi, S. (2021). Pemrograman Dasar dengan Python. Bandung: CV. Alfabeta.

Susetyo, R. (2020). Python: Pemrograman untuk Semua Kalangan. Jakarta: Elex

Media Komputindo.

https://www.pythonindo.com/program-pertama-dengan-python/

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 5: Fungsi dan Prosedur 58

Modul 5: Fungsi dan Prosedur

Modul ini dirancang sebagai panduan komprehensif bagi mahasiswa untuk memahami

konsep dasar dan aplikasi praktis fungsi dan prosedur dalam pemrograman Python,

yang merupakan fondasi penting dalam pengembangan perangkat lunak. Modul ini

memiliki relevansi yang sangat tinggi, karena fungsi dan prosedur adalah elemen kunci

yang memungkinkan kode menjadi lebih modular, efisien, dan mudah dikelola, yang

sangat dibutuhkan dalam dunia pemrograman profesional. Dengan mengikuti modul

ini, mahasiswa diharapkan mampu memahami cara mendefinisikan,

mengimplementasikan, dan memanfaatkan fungsi serta prosedur untuk memecahkan

berbagai masalah pemrograman secara efektif, serta dapat menerapkan konsep ini

dalam proyek dan tugas-tugas pemrograman mereka, sehingga memperkuat

kemampuan teknis dan logika pemrograman yang mereka miliki.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 5: Fungsi dan Prosedur 59

A. Penyajian Materi

1. Pengertian Fungsi dan Prosedur

a. Fungsi

Fungsi dalam Python adalah blok kode terpisah yang dirancang untuk

melakukan tugas spesifik dan dapat dipanggil dari bagian mana pun dalam

program. Fungsi didefinisikan menggunakan kata kunci ‘def’ diikuti dengan

nama fungsi dan daftar parameter di dalam tanda kurung. Setelah didefinisikan,

fungsi dapat dipanggil dengan menggunakan namanya diikuti oleh tanda

kurung yang berisi argumen yang sesuai dengan parameter.

Fungsi merupakan salah satu konsep penting dalam pemrograman karena

memungkinkan pembagian kode menjadi bagian-bagian yang lebih kecil dan

modular, yang dapat digunakan kembali (reusable). Ini sangat membantu

dalam memecahkan masalah yang kompleks dengan membagi mereka menjadi

sub-masalah yang lebih kecil dan lebih mudah dikelola.

b. Prosedur

Prosedur adalah jenis fungsi yang tidak mengembalikan nilai apa pun

kepada pemanggilnya. Dalam bahasa pemrograman lain, prosedur sering

disebut sebagai "fungsi void". Dalam Python, prosedur dapat dianggap sebagai

fungsi yang tidak menggunakan pernyataan return atau yang return-nya adalah

None.

Prosedur biasanya digunakan untuk menjalankan serangkaian instruksi

atau operasi, seperti mencetak hasil ke layar, memodifikasi variabel global,

atau melakukan tugas lain yang tidak memerlukan pengembalian nilai.

c. Perbedaan utama antara Fungsi dan Prosedur

• Pengembalian Nilai: Fungsi biasanya mengembalikan nilai dengan

menggunakan pernyataan return, sedangkan prosedur tidak

mengembalikan nilai apa pun (atau mengembalikan None secara implisit).

• Tujuan: Fungsi digunakan untuk menghitung dan mengembalikan nilai,

sedangkan prosedur digunakan untuk melakukan tugas tertentu tanpa perlu

mengembalikan nilai.

• Penggunaan: Fungsi lebih umum digunakan saat hasil dari operasi

diperlukan untuk langkah berikutnya dalam program, sementara prosedur

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 5: Fungsi dan Prosedur 60

lebih sering digunakan untuk operasi yang efek sampingnya adalah tujuan

utamanya, seperti output ke layar.

d. Mengapa Fungsi dan Prosedur penting?

• Modularitas: Dengan menggunakan fungsi dan prosedur, kode dapat

dibagi menjadi bagian-bagian kecil yang terisolasi, memungkinkan

pengembang untuk fokus pada satu bagian kode pada suatu waktu.

• Reuse: Fungsi dan prosedur dapat dipanggil berulang kali, sehingga

menghindari pengulangan kode (code duplication).

• Kemudahan Pemeliharaan: Karena fungsi dan prosedur dapat digunakan

kembali, setiap perubahan yang diperlukan hanya perlu dilakukan di satu

tempat (yaitu, dalam definisi fungsi atau prosedur), bukan di setiap tempat

kode tersebut muncul.

• Keterbacaan Kode: Membagi program menjadi fungsi dan prosedur yang

bermakna membuat kode lebih mudah dibaca dan dipahami, baik oleh

penulis kode maupun orang lain yang mungkin perlu memelihara atau

memperluas kode tersebut di masa mendatang.

2. Mendefinisikan Fungsi

Untuk mendefinisikan fungsi di Python, Anda harus menggunakan kata kunci

def diikuti dengan nama fungsi yang Anda pilih. Nama fungsi harus deskriptif dan

mengikuti aturan penamaan variabel, yaitu:

• Harus dimulai dengan huruf atau garis bawah (_).

• Tidak boleh mengandung spasi; gunakan underscore (_) untuk

menggantikan spasi jika diperlukan.

• Tidak boleh berupa kata kunci yang sudah digunakan di Python (seperti if,

else, for, dll).

Setelah nama fungsi, tambahkan tanda kurung yang mungkin berisi daftar

parameter yang akan diterima oleh fungsi tersebut. Parameter ini adalah variabel

input yang akan digunakan dalam fungsi. Jika fungsi tidak membutuhkan input,

tanda kurung tetap diperlukan tetapi kosong. Kemudian, tambahkan tanda titik dua :

di akhir baris pertama.

Blok kode yang ingin dijalankan dalam fungsi tersebut ditulis di baris

berikutnya dengan indentasi yang benar. Di Python, indentasi yang umum

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 5: Fungsi dan Prosedur 61

digunakan adalah empat spasi atau satu tab. Semua kode yang masuk dalam blok

fungsi harus diindentasi pada level yang sama.

Sintaks dasar untuk mendefinisikan fungsi adalah sebagai berikut:

• ‘def’: Kata kunci yang digunakan untuk mendefinisikan fungsi.

• ‘nama_fungsi’: Nama fungsi yang Anda buat.

• ‘parameter1’, ‘parameter2’: Daftar parameter (input) yang diterima oleh

fungsi.

• ‘:’ Tanda titik dua yang mengindikasikan dimulainya blok kode fungsi.

• # Blok kode: Kode yang akan dieksekusi ketika fungsi dipanggil.

• ‘return’: Pernyataan opsional yang digunakan untuk mengembalikan nilai dari

fungsi.

Contoh Mendefinisikan Fungsi:

Mari kita lihat contoh sederhana dari fungsi yang menjumlahkan dua angka:

Dalam contoh di atas:

• ‘tambah’ adalah nama fungsi.

• ‘a’ dan ‘b’ adalah parameter yang diterima oleh fungsi.

• Fungsi ini mengembalikan hasil penjumlahan dari ‘a’ dan ‘b’ dengan

menggunakan pernyataan return.

Cara menggunakan fungsi ini dalam kode Anda adalah dengan memanggilnya

menggunakan nama fungsi diikuti oleh tanda kurung yang berisi argumen:

Di sini, fungsi tambah dipanggil dengan argumen 3 dan 5, dan hasilnya (yaitu 8)

disimpan dalam variabel hasil, lalu dicetak ke layar.

3. Memanggil Fungsi

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 5: Fungsi dan Prosedur 62

Memanggil fungsi adalah proses menggunakan fungsi yang telah Anda

definisikan untuk melakukan tugas tertentu dalam program Anda. Ketika Anda

memanggil sebuah fungsi, Python menjalankan blok kode di dalam fungsi tersebut.

Untuk memanggil fungsi, gunakan nama fungsi diikuti dengan tanda kurung

yang berisi argumen yang diperlukan. Argumen ini adalah nilai yang Anda

kirimkan ke fungsi untuk diproses. Jika fungsi tidak memerlukan argumen, Anda

cukup menuliskan tanda kurung kosong setelah nama fungsi.

Contoh Memanggil Fungsi:

Pada contoh di atas:

• ‘tambah(5, 3)’ memanggil fungsi tambah dengan dua argumen, 5 dan 3.

• Fungsi tambah menjumlahkan kedua angka tersebut dan mengembalikan

hasilnya, yang kemudian disimpan dalam variabel hasil.

• print(hasil) mencetak nilai dari variabel hasil, yaitu 8.

Fungsi juga bisa dipanggil di dalam fungsi lain, atau bahkan di dalam dirinya

sendiri untuk membuat rekursi.

4. Parameter dan Argumen

Parameter dan argumen adalah konsep penting dalam pemrograman fungsi.

Mereka memungkinkan Anda untuk mengirim data ke dalam fungsi dan menerima

hasilnya.

• Parameter adalah variabel yang Anda tentukan di dalam tanda kurung saat

mendefinisikan fungsi. Mereka bertindak sebagai placeholder untuk nilai

yang akan Anda masukkan ke dalam fungsi.

• Argumen adalah nilai aktual yang Anda berikan kepada parameter ketika

Anda memanggil fungsi. Mereka adalah data yang akan diproses oleh fungsi.

Python menawarkan fleksibilitas dalam menangani parameter dan argumen

dengan berbagai fitur seperti parameter default, parameter variadic, dan parameter

kunci.

Parameter Default:

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 5: Fungsi dan Prosedur 63

Parameter default adalah parameter yang memiliki nilai awal yang ditentukan

saat fungsi didefinisikan. Jika Anda tidak memberikan argumen untuk parameter ini

ketika memanggil fungsi, maka nilai default akan digunakan.

Dalam contoh ini:

• Fungsi sapa memiliki parameter nama dengan nilai default "Tamu".

• Ketika sapa() dipanggil tanpa argumen, fungsi menggunakan nilai default

"Tamu".

• Ketika sapa("Ali") dipanggil, nilai default digantikan oleh argumen "Ali".

Parameter Variadic:

Parameter variadic memungkinkan Anda untuk mengirimkan sejumlah

argumen yang tidak terbatas ke dalam fungsi. Ini dilakukan dengan menggunakan

tanda bintang (*) di depan nama parameter.

Pada contoh ini:

• *args menunjukkan bahwa fungsi cetak dapat menerima sejumlah argumen

yang tidak terbatas.

• Fungsi kemudian mencetak setiap argumen yang diberikan satu per satu.

5. Prosedur dalam Python

Prosedur adalah konsep dalam pemrograman yang mengacu pada fungsi yang

tidak mengembalikan nilai. Dalam Python, tidak ada jenis yang terpisah untuk

prosedur; fungsi yang tidak menggunakan pernyataan return atau yang hanya

mengembalikan None dapat dianggap sebagai prosedur.

Contoh Prosedur:

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 5: Fungsi dan Prosedur 64

Dalam contoh ini:

• cetak_salam adalah sebuah prosedur karena tidak mengembalikan nilai apa

pun.

• Prosedur ini hanya mencetak pesan ke layar.

6. Manfaat Fungsi dan Prosedur

Menggunakan fungsi dan prosedur dalam pemrograman menawarkan

berbagai keuntungan yang membuat pengembangan perangkat lunak menjadi lebih

efisien dan terorganisir.

a. Modularitas:

Fungsi dan prosedur memungkinkan Anda memecah program besar menjadi

bagian-bagian kecil yang dapat dikelola. Setiap bagian berfokus pada tugas

tertentu, membuat pengembangan lebih terstruktur.

b. Penggunaan Kembali:

Setelah didefinisikan, fungsi dapat digunakan kembali di berbagai bagian

program atau bahkan di proyek lain. Ini mengurangi duplikasi kode dan

meningkatkan efisiensi.

c. Pemeliharaan:

Kode yang terorganisir dalam fungsi lebih mudah dipelihara. Perubahan pada

satu bagian kode tidak akan mempengaruhi bagian lain, selama fungsi tersebut

digunakan dengan benar.

d. Abstraksi:

Fungsi dan prosedur memungkinkan Anda menyembunyikan detail

implementasi kompleks dan hanya menampilkan antarmuka sederhana yang

relevan. Ini membuat kode lebih mudah dipahami oleh orang lain atau oleh

Anda sendiri di masa depan.

Dengan memahami dan menerapkan konsep-konsep ini, Anda dapat menulis

kode Python yang lebih efisien, dapat digunakan kembali, dan mudah dipelihara,

yang merupakan kunci untuk menjadi seorang pemrogram yang handal.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 5: Fungsi dan Prosedur 65

B. Latihan/contoh

Soal Latihan : Menggabungkan Konsep Fungsi dan Prosedur di Python

Problem Statement: Buatlah sebuah program Python yang terdiri dari beberapa fungsi.

Program ini akan meminta pengguna untuk memasukkan dua bilangan, kemudian

menggunakan fungsi untuk melakukan operasi penjumlahan, pengurangan, perkalian, dan

pembagian.

Langkah-Langkah Penyelesaian:

1. Mendefinisikan Fungsi untuk Operasi Aritmatika:

• Buat fungsi-fungsi terpisah untuk setiap operasi: ‘tambah(a, b)’, ‘kurang(a,

b)’, ‘kali(a, b)’, dan ‘bagi(a, b)’.

2. Menggunakan Fungsi dalam Program Utama:

• Buat program utama yang meminta pengguna memasukkan dua bilangan, lalu

memanggil setiap fungsi untuk melakukan operasi aritmatika dan menampilkan

hasilnya.

Contoh Implementasi:

Penjelasan Implementasi:

1. Fungsi tambah(a, b), kurang(a, b), kali(a, b), dan bagi(a, b):

• Masing-masing fungsi menerima dua parameter, a dan b, yang mewakili dua

bilangan yang akan dioperasikan. Fungsi ini mengembalikan hasil dari operasi

yang sesuai (penjumlahan, pengurangan, perkalian, atau pembagian).

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 5: Fungsi dan Prosedur 66

2. Blok Utama Program:

• Program meminta pengguna untuk memasukkan dua bilangan. Kemudian,

fungsi-fungsi operasi aritmatika dipanggil untuk menghitung hasilnya dan

menampilkan setiap hasil ke layar.

C. Rangkuman

Dalam modul ini, kita telah membahas perulangan serta fungsi dan prosedur

sebagai elemen penting dalam pemrograman Python. Perulangan seperti for, while,

dan perulangan bersarang dijelaskan untuk mengontrol aliran program dan

mengoptimalkan efisiensi. Fungsi dan prosedur memungkinkan pembagian kode

menjadi bagian-bagian kecil yang dapat digunakan kembali, meningkatkan

keterbacaan, modularitas, dan memudahkan pemeliharaan kode. Dengan contoh-

contoh praktis, seperti menghitung jumlah bilangan genap, mencetak pola bintang,

menghitung faktorial, serta menghitung luas persegi panjang, pemahaman mengenai

konsep ini diharapkan dapat diperkuat, memungkinkan Anda untuk menulis kode yang

lebih bersih, terstruktur, dan efisien.

D. Tugas

1. Jelaskan perbedaan antara fungsi yang mengembalikan nilai dan fungsi yang tidak

mengembalikan nilai (prosedur) dalam pemrograman Python.

2. Apa keuntungan dari menggunakan fungsi dalam pemrograman? Jelaskan

bagaimana fungsi membantu dalam pengelolaan kode program yang kompleks.

3. Berikan contoh penggunaan parameter default dalam sebuah fungsi dan jelaskan

situasi di mana ini sangat berguna.

4. Modifikasi Program Latihan: Tambahkan fungsi baru bernama modulus(a, b)

yang mengembalikan sisa hasil bagi dari a dan b. Tambahkan juga fitur dalam

program utama yang memungkinkan pengguna memilih operasi mana yang ingin

dijalankan.

Contoh Outputnya :

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 5: Fungsi dan Prosedur 67

5. Buat Program Baru: Buatlah sebuah program Python yang meminta pengguna

memasukkan sebuah kata, kemudian menggunakan fungsi untuk menghitung dan

menampilkan jumlah huruf vokal dalam kata tersebut. Fungsi yang dibutuhkan

adalah ‘hitung_vokal(kata)’.

Contoh Outputnya:

E. Pustaka

Lutz, M. (2013). Learning Python (5th ed.). O'Reilly Media.

Purwanto, A. (2020). "Pemrograman Python Dasar: Fungsi dan Prosedur". Jurnal

Teknologi Informasi dan Ilmu Komputer, 7(2), 102-110.

Rahman, R., & Lubis, M. (2017). Pemrograman Python untuk Pemula. Informatika.

Van Rossum, G., & Drake, F. L. (2009). The Python Language Reference Manual.

Network Theory Ltd.

Zelle, J. M. (2017). Python Programming: An Introduction to Computer Science (3rd ed.).

Franklin, Beedle & Associates Inc.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 6: Konsep Rekursi 68

Modul 6: Konsep Rekursi

Modul ini dirancang sebagai panduan komprehensif untuk memahami konsep dasar

rekursi dalam pemrograman, yang merupakan teknik penting di mana sebuah fungsi

memanggil dirinya sendiri untuk menyelesaikan masalah yang dapat dipecah menjadi

sub-masalah serupa. Modul ini memiliki relevansi tinggi bagi mahasiswa, terutama

dalam mengembangkan kemampuan untuk memecahkan masalah kompleks melalui

pendekatan yang lebih sederhana dan terstruktur. Dengan mengikuti modul ini,

mahasiswa diharapkan mampu memahami konsep rekursi secara mendalam,

mengimplementasikannya dalam berbagai kasus pemrograman, serta mengaplikasikan

teknik ini untuk menyelesaikan masalah seperti faktorial, Fibonacci, dan perhitungan

pangkat secara efisien.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 6: Konsep Rekursi 69

A. Penyajian Materi

Rekursi adalah teknik dalam pemrograman di mana sebuah fungsi memanggil

dirinya sendiri untuk menyelesaikan suatu masalah. Teknik ini sangat berguna ketika

suatu masalah dapat dipecah menjadi sub-masalah yang lebih kecil dan serupa dengan

masalah aslinya. Dalam rekursi, fungsi memanggil dirinya sendiri dengan argumen

yang lebih kecil atau lebih sederhana sampai mencapai kondisi dasar yang dapat

diselesaikan secara langsung tanpa perlu memanggil fungsi itu lagi.

Elemen Penting dalam Rekursi

1. Base Case (Kondisi Dasar):

• Ini adalah kondisi yang menghentikan rekursi. Tanpa base case, fungsi rekursif

akan memanggil dirinya sendiri tanpa henti, menyebabkan infinite loop atau

kehabisan memori (stack overflow).

• Base case adalah kasus sederhana yang dapat diselesaikan tanpa memerlukan

pemanggilan rekursi lebih lanjut.

• Contoh: Dalam perhitungan faktorial, faktorial(1) akan menjadi base case

karena faktorial(1) = 1 dan tidak membutuhkan pemanggilan fungsi lebih

lanjut.

2. Recursive Case (Kondisi Rekursif):

• Ini adalah bagian dari fungsi di mana rekursi benar-benar terjadi. Fungsi

memanggil dirinya sendiri dengan argumen yang lebih kecil atau sederhana,

secara bertahap mendekati base case.

• Kondisi rekursif harus mengarah ke base case agar rekursi dapat berhenti.

• Dalam contoh fungsi faktorial, faktorial(n-1) adalah recursive case yang

mengarah ke base case faktorial(1).

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 6: Konsep Rekursi 70

3. Stack Rekursi:

• Ketika sebuah fungsi rekursif dipanggil, panggilan tersebut ditempatkan di

dalam stack (tumpukan) sampai base case tercapai. Setelah itu, nilai-nilai dari

panggilan rekursif sebelumnya dihitung dan diambil dari stack.

• Jika base case tidak tercapai atau recursive case tidak mengurangi kompleksitas

masalah, stack akan terus menumpuk, yang bisa menyebabkan stack overflow.

4. Visualisasi Rekursi:

• Rekursi dapat divisualisasikan sebagai sebuah pohon di mana setiap panggilan

rekursif adalah cabang baru, dan base case adalah daun (ujung) pohon.

• Dalam perhitungan faktorial ‘5!’, pohon rekursinya akan terlihat seperti ini:

Cara Kerja Diagram:

• Faktorial(5) memanggil faktorial(4), dan menunggu hasil dari faktorial(4).

• Faktorial(4) memanggil faktorial(3), dan menunggu hasil dari faktorial(3).

• Proses ini terus berlanjut hingga faktorial(1) dipanggil.

• Faktorial(1) adalah base case, yang mengembalikan 1. Kemudian, setiap

pemanggilan fungsi kembali ke level sebelumnya dengan hasil

perhitungannya.

• Faktorial(2) menghitung 2 * 1.

• Faktorial(3) menghitung 3 * 2.

• Faktorial(4) menghitung 4 * 6.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 6: Konsep Rekursi 71

• Akhirnya, faktorial(5) menghitung 5 * 24, dan menghasilkan 120.

5. Contoh Sederhana : Faktorial

Faktorial dari angka n adalah hasil kali dari semua angka dari 1 sampai n. Misalnya,

faktorial dari 5 (ditulis 5!) adalah:

5! = 5 x 4 x 3 x 2 x 1 = 120

Cara Kerja Rekursi untuk Faktorial:

• Jika ‘n = 1’, maka ‘1! = 1’.(ini adalah kasus dasar)

• Jika ‘n > 1’, maka ‘n! – n x (n-1)!’. Misalnya,’5! – 5 x 4!’.

Contoh Kode Python:

6. Mengapa Rekursi Penting?

Rekursi penting karena memungkinkan kita menyelesaikan masalah yang kompleks

dengan cara yang sederhana. Banyak masalah besar bisa dipecah menjadi masalah

yang lebih kecil dan lebih mudah dipecahkan dengan rekursi.

7. Kelebihan dan Kekurangan Rekursi

Kelebihan:

• Mempermudah penyelesaian masalah yang dapat dipecah menjadi sub-

masalah serupa.

• Membuat kode lebih bersih dan lebih mudah dibaca untuk masalah yang

kompleks.

Kekurangan:

• Penggunaan memori yang lebih besar karena tumpukan panggilan fungsi.

• Risiko stack overflow jika tidak ada base case yang tepat atau masalah tidak

dipecah dengan benar.

B. Latihan/contoh

Soal Latihan:

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 6: Konsep Rekursi 72

1. Buatlah fungsi rekursif untuk menghitung faktorial dari suatu bilangan bulat positif.

2. Implementasikan fungsi rekursif untuk menghitung deret Fibonacci hingga elemen

ke-n.

3. Buatlah fungsi rekursif untuk menghitung pangkat dari suatu bilangan.

Cara Pengerjaan dan Coding:

Latihan 1: Faktorial

Soal: Hitung faktorial dari angka n menggunakan rekursi.

Kode Python:

Penjelasan:

 Base Case: if n == 1, fungsi akan mengembalikan 1 tanpa memanggil dirinya lagi.

 Recursive Case: return n * faktorial(n - 1) mengurangi nilai n secara bertahap

hingga mencapai base case.

Latihan 2: Fibonacci

Soal: Hitung deret Fibonacci ke-n menggunakan rekursi.

Kode Python:

Penjelasan:

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 6: Konsep Rekursi 73

 Base Case: if n == 0 mengembalikan 0 dan if n == 1 mengembalikan 1.

 Recursive Case: return fibonacci(n - 1) + fibonacci(n - 2) menghitung nilai

Fibonacci berdasarkan dua nilai sebelumnya.

Latihan 3: Pangkat

Soal: Hitung nilai pangkat dari bilangan x terhadap y menggunakan rekursi.

Kode Python:

Penjelasan:

 Base Case: if y == 0 mengembalikan 1 karena setiap bilangan pangkat 0 adalah 1.

 Recursive Case: return x * pangkat(x, y - 1) mengurangi nilai y secara bertahap

hingga mencapai base case.

C. Rangkuman

Rekursi adalah teknik pemrograman di mana fungsi memanggil dirinya sendiri untuk

menyelesaikan masalah yang dapat dipecah menjadi sub-masalah yang lebih kecil dan

mirip dengan masalah awal. Elemen penting dalam rekursi meliputi kondisi dasar (base

case) yang menghentikan rekursi, kondisi rekursif yang membuat fungsi memanggil

dirinya sendiri, dan stack rekursi yang menyimpan setiap panggilan fungsi hingga base

case tercapai. Rekursi sering digunakan dalam penyelesaian masalah seperti faktorial,

Fibonacci, dan pangkat, karena memungkinkan penyelesaian yang lebih sederhana untuk

masalah kompleks, meskipun dengan risiko penggunaan memori yang lebih besar dan

kemungkinan stack overflow.

D. Tugas

1. Jelaskan konsep base case dan recursive case dalam rekursi, serta berikan

contohnya.

2. Diskusikan kelebihan dan kekurangan penggunaan rekursi dalam pemrograman.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 6: Konsep Rekursi 74

3. Implementasikan fungsi rekursif untuk menghitung faktorial dari bilangan n.

4. Buatlah fungsi rekursif untuk menghitung nilai pangkat x^y.

5. Tulis fungsi rekursif untuk menentukan apakah sebuah bilangan adalah bilangan

prima.

E. Pustaka

Kadir, A. (2016). Dasar-Dasar Algoritma. Yogyakarta: Andi Offset.

Knuth, D. E. (1997). The Art of Computer Programming, Volume 1: Fundamental

Algorithms. Addison-Wesley.

Mulyono, D. (2018). Pemrograman Komputer dengan C dan Python. Yogyakarta: Graha

Ilmu.

Purnomo, H. (2020). Belajar Python untuk Pemula. Bandung: Informatika.

Suryadi, S. (2021). Pemrograman Dasar dengan Python. Bandung: CV. Alfabeta.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 7: Sorting 75

Modul 7: Sorting

Modul ini dirancang sebagai panduan komprehensif untuk mempelajari dasar-dasar

sorting, mencakup konsep, algoritma, dan implementasi praktis. Modul ini memiliki

relevansi tinggi bagi mahasiswa, terutama dalam memahami bagaimana data dapat

diorganisir secara efisien, yang merupakan fondasi penting dalam berbagai aplikasi

pemrograman dan pengembangan perangkat lunak. Dengan mengikuti modul ini,

mahasiswa diharapkan mampu memahami konsep sorting, menguasai tiga algoritma

sorting sederhana (Bubble Sort, Selection Sort, dan Insertion Sort), serta mampu

mengimplementasikan dan menganalisis kinerja dari masing-masing algoritma tersebut

dalam berbagai situasi yang berbeda.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 7: Sorting 76

A. Penyajian Materi

1. Definisi Sorting :

Sorting adalah proses menyusun sekumpulan data dalam urutan tertentu. Data yang

diurutkan dapat berupa angka, string, atau objek lain yang memiliki relasi urutan.

Sorting penting untuk meningkatkan efisiensi dalam pencarian, penggabungan, dan

operasi lain yang memerlukan data terstruktur.

2. Algoritma Sorting Sederhana :

Algoritma sorting sederhana adalah teknik pengurutan yang mudah dipahami dan

diimplementasikan, meskipun mungkin tidak selalu paling efisien. Beberapa

algoritma sorting sederhana meliputi:

a. Bubble Sort: Bubble Sort adalah algoritma sorting yang bekerja dengan cara

membandingkan setiap pasangan elemen bersebelahan dalam daftar dan

menukar mereka jika urutannya salah. Proses ini diulangi terus menerus hingga

tidak ada lagi penukaran yang diperlukan, yang berarti daftar sudah terurut.

• Langkah-langkah

1. Mulai dari elemen pertama dalam daftar.

2. Bandingkan elemen saat ini dengan elemen berikutnya.

3. Jika elemen saat ini lebih besar dari elemen berikutnya, tukar

keduanya.

4. Pindah ke elemen berikutnya dan ulangi proses ini hingga akhir

daftar.

5. Ulangi seluruh proses untuk daftar yang lebih pendek (tidak

termasuk elemen terakhir yang sudah terurut) hingga tidak ada lagi

penukaran yang terjadi.

• Contoh

Misalkan kita memiliki daftar

1. Iterasi 1 :

• Langkah 1: Bandingkan 5 dan 3. Karena 5 > 3, tukar mereka.

Daftar menjadi

3 5 8 4 2

• Langkah 2: Bandingkan 5 dan 8. Karena 5 < 8, tidak ada

penukaran. Daftar tetap

5 3 8 4 2

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 7: Sorting 77

3 5 8 4 2

• Langkah 3: Bandingkan 8 dan 4. Karena 8 > 4, tukar mereka.

Daftar menjadi

3 5 4 8 2

• Langkah 4: Bandingkan 8 dan 2. Karena 8 > 2, tukar mereka.

Daftar menjadi

3 5 4 2 8

Pada akhir iterasi pertama, elemen terbesar, 8, sudah berada di posisi

akhirnya.

2. Iterasi 2 :

• Langkah 1: Bandingkan 3 dan 5. Karena 3 < 5, tidak ada

penukaran. Daftar tetap

3 5 4 2 8

• Langkah 2: Bandingkan 5 dan 4. Karena 5 > 4, tukar mereka.

Daftar menjadi

3 4 5 2 8

• Langkah 3: Bandingkan 5 dan 2. Karena 5 > 2, tukar mereka.

Daftar menjadi

3 4 2 5 8

Pada akhir iterasi kedua, elemen kedua terbesar, 5, sudah berada di

posisi akhirnya.

3. Iterasi 3 :

• Langkah 1: Bandingkan 3 dan 4. Karena 3 < 4, tidak ada

penukaran. Daftar tetap

3 4 2 5 8

• Langkah 2: Bandingkan 4 dan 2. Karena 4 > 2, tukar mereka.

Daftar menjadi

3 2 4 5 8

Pada akhir iterasi ketiga, elemen ketiga terbesar, 4, sudah berada di

posisi akhirnya.

4. Iterasi 5 :

• Langkah 1: Bandingkan 3 dan 2. Karena 3 > 2, tukar mereka.

Daftar menjadi

2 3 4 5 8

Hasil akhir: Daftar kini terurut menjadi [2, 3, 4, 5, 8].

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 7: Sorting 78

b. Selection Sort: Selection Sort bekerja dengan cara menemukan elemen terkecil

dalam daftar dan menukarnya dengan elemen pertama. Kemudian, algoritma

ini melanjutkan dengan mencari elemen terkecil di sub-daftar yang belum

terurut dan menukarnya dengan elemen pertama dari sub-daftar tersebut.

Proses ini diulang hingga seluruh daftar terurut.

• Langkah-langkah :

a. Cari elemen terkecil dalam daftar.

b. Tukar elemen terkecil tersebut dengan elemen pertama.

c. Ulangi proses untuk sub-daftar yang lebih kecil (dimulai dari elemen

kedua) hingga semua elemen terurut.

• Contoh :

Misalkan kita memiliki daftar

• Iterasi 1: Cari elemen terkecil, yaitu 10. Tukar dengan elemen

pertama (29)

10 29 14 37 14

• Iterasi 2: Cari elemen terkecil di sub-daftar [29, 14, 37, 14], yaitu 14.

Tukar dengan elemen kedua:

10 14 29 37 14

• Iterasi 3: Cari elemen terkecil di sub-daftar [29, 37, 14], yaitu 14.

Tukar dengan elemen ketiga:

10 14 14 37 29

• Iterasi 4: Tidak perlu menukar elemen keempat karena hanya dua

elemen tersisa:

10 14 14 29 37

Hasil akhir: Daftar kini terurut menjadi [10, 14, 14, 29, 37].

c. Insertion Sort: Insertion Sort bekerja dengan cara membangun daftar terurut

satu elemen pada satu waktu. Ini berarti setiap elemen dari daftar yang belum

terurut diambil dan dimasukkan ke posisi yang benar dalam sub-daftar yang

sudah terurut.

• Langkah-langkah

a. Mulai dari elemen kedua (karena elemen pertama sudah dianggap

terurut).

b. Bandingkan elemen ini dengan elemen sebelumnya.

29 10 14 37 14

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 7: Sorting 79

c. Geser elemen sebelumnya ke posisi berikutnya jika lebih besar dari

elemen saat ini.

d. Masukkan elemen saat ini ke posisi yang tepat.

e. Ulangi proses untuk semua elemen berikutnya.

• Contoh

Misalkan kita memiliki daftar [12, 11, 13, 5, 6].

Kita akan menggunakan Insertion Sort untuk mengurutkan daftar ini.

1. Iterasi 1 :

• Cari elemen terkecil dalam seluruh daftar. Elemen terkecil adalah

10.

• Tukar elemen terkecil (10) dengan elemen pertama (29). Daftar

menjadi [10, 29, 14, 37, 14].

2. Iterasi 2 :

• Cari elemen terkecil dalam sub-daftar [29, 14, 37, 14]. Elemen

terkecil adalah 14.

• Tukar elemen terkecil (14) dengan elemen kedua (29). Daftar

menjadi [10, 14, 29, 37, 14].

3. Iterasi 3 :

• Cari elemen terkecil dalam sub-daftar [29, 37, 14]. Elemen

terkecil adalah 14.

• Tukar elemen terkecil (14) dengan elemen ketiga (29). Daftar

menjadi [10, 14, 14, 37, 29].

4. Iterasi 4 :

• Pada tahap ini, hanya dua elemen tersisa [37, 29]. Cari elemen

terkecil, yaitu 29.

• Tukar elemen terkecil (29) dengan elemen keempat (37). Daftar

menjadi [10, 14, 14, 29, 37].

Hasil akhir: Daftar kini terurut menjadi [5, 6, 11, 12, 13].

B. Latihan/contoh

1. Latihan 1: Implementasi Bubble Sort

Petunjuk:

• Tulis fungsi untuk mengurutkan array menggunakan algoritma Bubble Sort.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 7: Sorting 80

• Gunakan dua loop: loop luar untuk iterasi seluruh daftar, dan loop dalam

untuk membandingkan elemen-elemen yang bersebelahan.

• Lakukan penukaran elemen jika urutannya salah.

Kode Implementasi:

Penjelasan:

• Langkah 1: Mulai dari elemen pertama, bandingkan dengan elemen

berikutnya, dan tukar jika perlu.

• Langkah 2: Lanjutkan ke elemen berikutnya dan ulangi proses hingga tidak

ada lagi penukaran yang diperlukan.

• Output: Daftar terurut ditampilkan pada akhir program.

2. Latihan 2 : Selection Sort

Petunjuk :

• Tulis fungsi untuk mengurutkan array menggunakan algoritma Selection

Sort.

• Gunakan loop untuk menemukan elemen terkecil dan tukar elemen

tersebut dengan elemen pertama yang belum terurut.

• Lanjutkan proses untuk sub-daftar yang lebih kecil.

Kode Implementasi :

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 7: Sorting 81

Penjelasan :

• Langkah 1: Temukan elemen terkecil dari seluruh array dan tukar dengan

elemen pertama.

• Langkah 2: Ulangi untuk sub-daftar yang lebih kecil hingga seluruh array

terurut.

• Output: Daftar terurut ditampilkan pada akhir program.

3. Latihan 3 : Insertion Sort

Petunjuk :

• Tulis fungsi untuk mengurutkan array menggunakan algoritma Insertion

Sort.

• Mulai dari elemen kedua, bandingkan dengan elemen-elemen sebelumnya,

dan sisipkan di tempat yang tepat.

• Geser elemen-elemen yang lebih besar untuk memberi ruang bagi elemen

baru.

Kode Implementasi :

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 7: Sorting 82

Penjelasan :

• Langkah 1: Mulai dari elemen kedua dan bandingkan dengan elemen di sub-daftar

terurut.

• Langkah 2: Geser elemen-elemen yang lebih besar untuk memberi tempat bagi

elemen yang sedang disisipkan.

Output: Daftar terurut ditampilkan pada akhir program.

C. Rangkuman

Modul ini telah membahas konsep dasar sorting dan tiga algoritma sorting sederhana:

Bubble Sort, Selection Sort, dan Insertion Sort. Masing-masing algoritma memiliki

kelebihan dan kekurangan, dan penggunaannya tergantung pada situasi dan data yang

dihadapi. Memahami dan mengimplementasikan algoritma sorting adalah keterampilan

dasar yang penting dalam pemrograman.

D. Tugas

1. Implementasikan algoritma Bubble Sort, Selection Sort, dan Insertion Sort untuk

mengurutkan daftar angka acak yang lebih panjang.

2. Analisis waktu eksekusi dari setiap algoritma dengan menggunakan data input yang

bervariasi.

3. Jelaskan situasi di mana satu algoritma lebih efisien dibandingkan yang lain.

E. Pustaka

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 7: Sorting 83

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to

Algorithms. MIT Press.

Sedgewick, R., & Wayne, K. (2011). Algorithms. Addison-Wesley.

McDowell, G. L. (2015). Cracking the Coding Interview: 189 Programming Questions and

Solutions. CareerCup.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 8: Searching 84

Modul 8: Searching

Modul ini dirancang sebagai panduan komprehensif untuk memahami berbagai teknik

pencarian data yang esensial dalam pemrograman. Mahasiswa akan mempelajari

konsep dasar pencarian data, termasuk pencarian linear, pencarian biner, dan pencarian

interpolasi, serta penerapan struktur data seperti pohon untuk meningkatkan efisiensi

pencarian.Modul ini memiliki relevansi tinggi bagi mahasiswa, terutama dalam

memahami bagaimana cara menemukan data dengan cepat dan efisien dalam berbagai

struktur data. Pengetahuan ini sangat penting dalam pengembangan perangkat lunak

yang memerlukan pencarian data secara cepat dan tepat, seperti dalam pengelolaan

basis data, sistem pencarian teks, dan aplikasi lain yang menangani volume data

besar.Dengan mengikuti modul ini, mahasiswa diharapkan mampu memahami dan

mengimplementasikan teknik pencarian yang tepat sesuai dengan kebutuhan dan

karakteristik data. Mereka juga akan mendapatkan wawasan tentang cara meningkatkan

kinerja aplikasi dengan memilih teknik pencarian yang paling efisien untuk situasi

tertentu.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 8: Searching 85

A. Penyajian Materi

1. Konsep Dasar

Pencarian data, atau search, adalah operasi fundamental yang sering

digunakan dalam pemrograman. Dalam konteks array atau list di Python,

pencarian linier adalah metode yang paling sederhana, namun tergolong lambat.

Efisiensi pencarian dapat ditingkatkan dengan menggunakan pencarian biner.

Namun, perlu diingat bahwa pencarian biner hanya dapat diterapkan pada data

yang telah diurutkan. Ketika kunci baru ditambahkan atau dihapus dari array atau

list, urutannya harus tetap dipertahankan, yang bisa memakan waktu karena perlu

menggeser elemen-elemen lain.

Untuk mengatasi kelemahan tersebut, list tertaut dapat digunakan karena

memungkinkan penyisipan dan penghapusan yang lebih cepat tanpa harus

menggeser elemen lain. Namun, list tertaut hanya mendukung pencarian linier,

meskipun datanya diurutkan. Oleh karena itu, penggunaan struktur data seperti

pohon bisa menjadi solusi yang lebih efisien dalam melakukan pencarian.

Pohon adalah struktur data yang memungkinkan pengorganisasian data

secara hierarkis. Terdapat berbagai jenis pohon pencarian, yang masing-masing

memiliki keunggulan tertentu. Salah satu keuntungan utama dari pohon pencarian

adalah kemampuannya untuk melakukan operasi pencarian dengan efisien,

memungkinkan pencarian item tertentu dalam waktu yang lebih singkat

dibandingkan dengan metode lain.

Dalam pengembangan aplikasi, pohon pencarian dapat digunakan untuk

mengimplementasikan berbagai jenis wadah data. Beberapa di antaranya hanya

perlu menyimpan kunci pencarian, sementara yang lain mungkin mengasosiasikan

kunci dengan data tambahan, mirip dengan bagaimana ADT (Abstract Data Type)

peta bekerja. Pohon pencarian ini juga bisa digunakan untuk meningkatkan

efisiensi operasi seperti penyisipan, penghapusan, dan pencarian.

Konsep teknik pencarian dikembangkan untuk mengatasi keterbatasan

yang ada dalam teknologi pencarian kata kunci klasik, terutama ketika menangani

kumpulan data teks yang besar dan tidak terstruktur. Misalnya, dalam pencarian

kata kunci, sering kali terjadi kesalahan seperti positif palsu (hasil yang tidak

relevan) atau negatif palsu (hasil yang relevan tetapi tidak terdeteksi). Masalah ini

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 8: Searching 86

dapat terjadi karena adanya sinonim (kata yang berbeda tetapi memiliki makna

yang sama) dan polisemi (satu kata yang memiliki lebih dari satu makna). Dalam

pencarian konsep, teknik disambiguasi makna kata digunakan untuk memahami

arti sebenarnya dari kata-kata tersebut, sehingga hasil pencarian menjadi lebih

relevan.

2. Teknik Pencarian

Teknik pencarian dalam pemrograman digunakan untuk menemukan data

tertentu dari sekumpulan data yang memiliki tipe yang sama. Proses pencarian

biasanya dilakukan sebelum melakukan update atau penghapusan data. Ada

beberapa teknik pencarian yang digunakan untuk menemukan data dalam

kumpulan data. Berikut adalah beberapa teknik yang sering digunakan:

a. Pencarian Sekuensial

Pencarian sekuensial, atau linear search, adalah metode pencarian yang paling

sederhana, di mana setiap elemen dalam struktur data diperiksa satu per satu

mulai dari elemen pertama hingga elemen yang dicari ditemukan. Meskipun

metode ini mudah dipahami dan diimplementasikan, namun tidak efisien

karena memerlukan pemeriksaan setiap elemen dalam struktur data, terutama

jika jumlah data sangat besar.

Contoh implementasi pencarian Sekuensial dalam Python :

Hasil Eksekusi :

Penjelasan :

• Algoritma mencari elemen 2 dalam array [5, 3, 7, 2, 8, 1].

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 8: Searching 87

• Algoritma memeriksa setiap elemen dalam array secara berurutan dari

indeks 0 hingga elemen ditemukan.

• Elemen 2 ditemukan pada indeks 3, dan algoritma mengembalikan

indeks tersebut.

b. Pencarian Linear

Dalam pencarian linear, elemen dicari secara berurutan satu per satu dalam

struktur data. Jika ditemukan kecocokan, proses pencarian dihentikan dan

elemen tersebut dikembalikan. Jika tidak ditemukan, pencarian dilanjutkan

hingga seluruh elemen dalam struktur data diperiksa.

Contoh implementasi pencarian linear dalam Python:

Hasil Eksekusi :

Penjelasan :

• Algoritma melakukan pencarian elemen 4 dalam array [3, 8, 2, 4, 6, 9, 1].

• Algoritma mulai dari elemen pertama dan membandingkan setiap elemen

satu per satu dengan target.

• Saat algoritma mencapai elemen pada indeks 3, ditemukan bahwa arr[3]

adalah 4, sehingga algoritma mengembalikan indeks 3.

• Jika elemen tidak ditemukan, algoritma akan mengembalikan -1.

c. Pencarian Interpolasi

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 8: Searching 88

Pencarian interpolasi adalah teknik pencarian yang bekerja berdasarkan posisi

yang diestimasi dari elemen yang dicari. Algoritma ini efektif pada data yang

diurutkan dan didistribusikan secara merata. Proses pencarian dimulai dengan

menghitung posisi probe sebagai estimasi posisi elemen tengah dalam array.

Jika elemen yang dicari lebih besar dari elemen tengah, pencarian dilanjutkan

pada subarray di sebelah kanan, dan sebaliknya. Proses ini terus berlanjut

hingga elemen ditemukan atau subarray menjadi nol.

Contoh implementasi pencarian Interpolasi dalam Python:

Hasil Eksekusi :

Penjelasan :

• Algoritma mencari elemen 70 dalam array terurut [10, 20, 30, 40, 50, 60,

70, 80, 90].

• Algoritma menggunakan rumus interpolasi untuk memperkirakan lokasi

target dalam array berdasarkan nilai-nilai minimum (arr[low]) dan

maksimum (arr[high]) dalam array.

• Pada iterasi pertama, posisi yang dihitung adalah 6, dan ditemukan

bahwa arr[6] adalah 70, sehingga algoritma mengembalikan indeks 6.

d. Pencarian Biner

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 8: Searching 89

Pencarian biner adalah algoritma pencarian yang digunakan pada data yang

telah diurutkan. Metode ini jauh lebih efisien dibandingkan pencarian linear

karena hanya memerlukan waktu pencarian sebesar O(log n) dibandingkan

O(n) pada pencarian linear. Pencarian biner membagi array menjadi dua

bagian secara rekursif dan membandingkan elemen tengah dengan elemen

yang dicari, terus mengulangi proses hingga elemen ditemukan atau semua

elemen telah diperiksa.

3. Cara Kerja Pencarian Biner

Prinsip dasar pencarian biner adalah membagi array menjadi dua bagian setiap

kali melakukan pencarian. Jika elemen tengah adalah elemen yang dicari,

pencarian berhenti. Jika elemen yang dicari lebih kecil dari elemen tengah,

pencarian dilanjutkan pada bagian kiri array, dan jika lebih besar, pada bagian

kanan array. Proses ini terus berlanjut hingga elemen ditemukan atau bagian array

yang tersisa menjadi kosong.

Contoh implementasi pencarian Interpolasi dalam Python:

Hasil Eksekusi:

Penjelasan:

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 8: Searching 90

• Algoritma melakukan pencarian elemen 7 dalam array terurut [1, 2, 3, 4, 5, 6,

7, 8, 9, 10].

• Algoritma pertama kali membagi array menjadi dua bagian dengan

menentukan elemen tengah (mid).

• Pada iterasi pertama, mid adalah 5, dan karena 7 lebih besar dari arr[5],

algoritma melanjutkan pencarian pada bagian kanan array.

• Pada iterasi kedua, mid adalah 6, dan ditemukan bahwa arr[6] adalah 7,

sehingga algoritma mengembalikan indeks 6.

B. Latihan/contoh

1. Berikan implementasi kode Python untuk pencarian biner pada array yang terurut

menurun.

2. Gunakan pencarian interpolasi untuk menemukan elemen dalam array [15, 18, 22,

27, 31, 35, 42, 49] dengan target 35.

3. Implementasikan pencarian sekuensial untuk mencari elemen 8 dalam array [9, 3,

7, 6, 8, 2, 1].

Cara Pengerjaan:

1. Pencarian Biner Array Terurut Menurun:

• Modifikasi algoritma pencarian biner untuk mengakomodasi urutan

menurun.

• Bandingkan elemen tengah dengan target, dan tentukan apakah pencarian

harus dilanjutkan di bagian kiri atau kanan array berdasarkan urutan

menurun.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 8: Searching 91

Penjelasan:

Algoritma ini menyesuaikan pencarian biner dengan urutan menurun. Jika

elemen tengah lebih besar dari target, pencarian dilanjutkan ke bagian kanan

array, dan sebaliknya.

2. Pencarian Interpolasi:

 Gunakan rumus interpolasi untuk memperkirakan lokasi target.

 Periksa apakah target berada dalam subarray yang telah diperkirakan, dan

lanjutkan pencarian sesuai dengan hasil interpolasi.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 8: Searching 92

Penjelasan:

Algoritma ini memperkirakan posisi target dalam array berdasarkan nilai

elemen-elemen di dalamnya dan mempersempit pencarian sesuai dengan posisi

yang telah diperkirakan.

3. Pencarian Sekuensial:

Periksa setiap elemen dalam array satu per satu mulai dari elemen pertama

hingga target ditemukan.

Penjelasan:

Algoritma ini mencari elemen 8 dengan memeriksa setiap elemen dalam array

hingga elemen ditemukan pada indeks 4.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 8: Searching 93

C. Rangkuman

Pencarian data adalah operasi dasar yang sering digunakan dalam pemrograman

untuk menemukan elemen tertentu dalam suatu struktur data. Terdapat beberapa teknik

pencarian yang umum, seperti pencarian sekuensial yang sederhana namun tidak efisien

untuk dataset besar, pencarian biner yang efisien namun hanya bekerja pada data yang

terurut, dan pencarian interpolasi yang efektif pada data yang terdistribusi merata.

Pencarian biner dan interpolasi mengandalkan sifat urutan data untuk mempercepat

pencarian, sedangkan pencarian sekuensial memeriksa setiap elemen secara berurutan.

D. Tugas

1. Jelaskan perbedaan antara pencarian linear dan pencarian biner, serta berikan

contoh situasi di mana masing-masing lebih efektif.

2. Apa keuntungan dan kelemahan dari pencarian interpolasi dibandingkan dengan

pencarian biner?

3. Implementasikan pencarian interpolasi pada array terurut [5, 10, 15, 20, 25, 30]

dengan target 25.

4. Buat implementasi pencarian sekuensial untuk mencari elemen 100 dalam array

[50, 40, 30, 20, 10].

E. Pustaka

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to

Algorithms (3rd ed.). MIT Press.

Knuth, D. E. (1998). The Art of Computer Programming, Volume 3: Sorting and Searching

(2nd ed.). Addison-Wesley.

Mohamad Aslam Katahman, M. F. (2021). Pembangunan Aplikasi Realiti Terimbuh Untuk

Pengenalan Struktur Data. Information Technology And Computer Science.

Nasrullah, A. H. (2021). Implementasi Algoritma Decision Tree Untuk Klasifikasi

Produk Laris. Jurnal Ilmiah Ilmu Komputer I.

Pradana Setialana, T. B. (2017). Pencarian Hubungan Kekerabatan Pada Struktur

Data Genealogy Dalam Graph Databas.

Risah Subariah, E. S. (T.Thn.). Praktikum Analisis & Perancangan Sistem

Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Addison-Wesley.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 9: Pemrograman Berorientasi Objek 94

Modul 9: Pemrograman Berorientasi Objek

 Modul ini dirancang sebagai panduan komprehensif bagi mahasiswa untuk memahami

dan mengimplementasikan konsep-konsep utama dalam Pemrograman Berorientasi

Objek (OOP). Modul ini memiliki relevansi tinggi bagi mahasiswa, terutama dalam

mempelajari cara kerja dan penerapan OOP dalam pengembangan perangkat lunak

modern. Dengan mengikuti modul ini, mahasiswa diharapkan mampu memahami dan

menerapkan prinsip-prinsip OOP seperti kelas dan objek, enkapsulasi, pewarisan,

polimorfisme, dan abstraksi dalam berbagai proyek pemrograman. Modul ini juga

bertujuan untuk membekali mahasiswa dengan keterampilan praktis yang diperlukan

untuk menulis kode yang bersih, modular, dan mudah dikelola menggunakan

paradigma OOP.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 9: Pemrograman Berorientasi Objek 95

A. Penyajian Materi

Pemrograman Berorientasi Objek (Object-Oriented Programming/OOP) adalah

sebuah paradigma pemrograman yang berfokus pada penggunaan "objek" sebagai unit

dasar untuk membangun perangkat lunak. Objek-objek ini merupakan representasi dari

dunia nyata yang berisi data dan perilaku. Dalam OOP, program dibangun dengan

menggabungkan data (disebut atribut atau properti) dan fungsi (disebut metode) dalam satu

unit yang disebut kelas.

1. Kelas dan Objek

a. Pengertian:

• Kelas adalah blueprint atau cetak biru dari objek. Kelas mendefinisikan

atribut (properti) dan metode (fungsi) yang dimiliki oleh objek.

• Objek adalah instance atau contoh nyata dari kelas. Ketika kita membuat

objek, kita sebenarnya membuat entitas yang mengikuti struktur yang sudah

ditentukan oleh kelas.

b. Cara Kerja:

• Ketika sebuah kelas didefinisikan, itu hanya sebuah template.

• Ketika kita membuat objek dari kelas tersebut, objek tersebut akan memiliki

atribut dan metode sesuai dengan definisi yang ada di kelas.

c. Sintaks Dasar:

d. Penjelasan:

• class NamaKelas: mendefinisikan sebuah kelas baru.

• __init__ adalah metode khusus yang disebut konstruktor, yang dipanggil

ketika objek dibuat.

• self mengacu pada instance saat ini dari kelas.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 9: Pemrograman Berorientasi Objek 96

2. Enkapsulasi

a. Pengertian:

Enkapsulasi adalah proses membungkus data (atribut) dan metode (fungsi)

dalam satu unit, yaitu kelas. Enkapsulasi juga memungkinkan kita untuk

melindungi data dari akses langsung dari luar kelas.

b. Cara Kerja:

• Data atau atribut tertentu dapat dibuat private dengan menambahkan dua

garis bawah __ di awal nama atribut.

• Atribut private ini hanya bisa diakses melalui metode yang ada di dalam

kelas itu sendiri.

c. Sintaks Dasar:

d. Penjelasan:

• __atribut_private adalah contoh atribut yang dilindungi oleh enkapsulasi.

• Metode get_atribut dan set_atribut digunakan untuk mengakses dan

mengubah nilai dari atribut private tersebut.

3. Pewarisan

a. Pengertian:

Pewarisan memungkinkan sebuah kelas baru (subclass) untuk mewarisi sifat

dan metode dari kelas lain (superclass). Hal ini memudahkan dalam membuat

kelas baru yang memiliki fitur-fitur yang sudah ada di kelas lain.

b. Cara Kerja:

Subclass akan mewarisi semua atribut dan metode dari superclass, dan bisa

menambahkan atau mengubah fitur-fitur yang ada sesuai kebutuhan.

c. Sintaks Dasar:

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 9: Pemrograman Berorientasi Objek 97

d. Penjelasan:

• class Subclass(Superclass): menunjukkan bahwa Subclass mewarisi dari

Superclass.

• metode_super dapat digunakan oleh Subclass karena diwariskan dari

Superclass.

4. Polimorfisme

a. Pengertian:

Polimorfisme memungkinkan metode yang sama untuk digunakan oleh objek

dari kelas yang berbeda. Dengan polimorfisme, satu metode bisa bekerja

dengan cara yang berbeda tergantung pada objek yang memanggilnya.

b. Cara Kerja:

Dalam OOP, polimorfisme sering diimplementasikan melalui metode yang

memiliki nama yang sama di beberapa kelas berbeda. Metode tersebut dapat

melakukan tugas yang berbeda tergantung pada kelas yang digunakan.

c. Sintaks Dasar:

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 9: Pemrograman Berorientasi Objek 98

d. Penjelasan:

• KelasA dan KelasB memiliki metode dengan nama yang sama, tetapi

melakukan hal yang berbeda.

• Ketika kita memanggil metode pada objek yang berbeda, hasilnya akan

disesuaikan dengan kelas dari objek tersebut.

B. Latihan/contoh

Latihan 1: Membuat Kelas dan Objek

Soal:

Buatlah kelas Mahasiswa yang memiliki atribut nama, nim, dan jurusan. Tambahkan

metode untuk menampilkan informasi mahasiswa.

Cara Pengerjaan:

1. Definisikan kelas Mahasiswa dengan konstruktor __init__ untuk inisialisasi atribut.

2. Tambahkan metode tampilkan_info untuk menampilkan informasi mahasiswa.

Kode Implementasi:

Penjelasan:

 Kelas Mahasiswa memiliki tiga atribut: nama, nim, dan jurusan.

 Metode tampilkan_info digunakan untuk mencetak informasi dari objek mhs1.

Latihan 2: Implementasi Enkapsulasi

Soal: Buatlah kelas RekeningBank yang memiliki atribut private saldo. Tambahkan

metode untuk menyetor dan menarik uang, serta menampilkan saldo saat ini.

Cara Pengerjaan:

1. Definisikan kelas RekeningBank dengan atribut __saldo.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 9: Pemrograman Berorientasi Objek 99

2. Tambahkan metode untuk menyetor (setor_uang), menarik uang (tarik_uang), dan

menampilkan saldo (tampilkan_saldo).

Kode Implementasi:

Penjelasan:

 Atribut __saldo dilindungi dari akses langsung.

 Metode setor_uang dan tarik_uang mengubah saldo, sedangkan tampilkan_saldo

menampilkan saldo saat ini.

Latihan 3: Implementasi Pewarisan

Soal:

Buatlah kelas Pegawai dengan atribut nama dan gaji. Buat kelas Manajer yang mewarisi

dari Pegawai dan menambahkan atribut divisi.

Cara Pengerjaan:

1. Definisikan kelas Pegawai dan tambahkan metode tampilkan_info.

2. Definisikan kelas Manajer sebagai subclass dari Pegawai dengan tambahan atribut

divisi.

Kode Implementasi:

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 9: Pemrograman Berorientasi Objek 100

Penjelasan:

 Kelas Manajer mewarisi atribut dan metode dari kelas Pegawai.

 Metode tampilkan_info di kelas Manajer diperluas untuk menampilkan divisi.

C. Rangkuman

Pemrograman Berorientasi Objek (OOP) adalah paradigma yang memanfaatkan konsep

kelas dan objek untuk membangun perangkat lunak. Melalui penggunaan enkapsulasi,

pewarisan, dan polimorfisme, OOP memungkinkan pengembang untuk menciptakan kode

yang modular, mudah dipelihara, dan dapat digunakan kembali. Dengan menggabungkan

atribut dan metode dalam satu unit, OOP menyederhanakan proses pengembangan

perangkat lunak yang kompleks.

D. Tugas

1. Jelaskan perbedaan antara kelas dan objek dalam Pemrograman Berorientasi Objek.

2. Bagaimana konsep pewarisan meningkatkan efisiensi dalam pengembangan

perangkat lunak? Berikan contoh.

3. Buatlah kelas Perpustakaan yang memiliki atribut nama_buku dan stok.

Tambahkan metode untuk menambahkan buku, meminjam buku, dan menampilkan

daftar buku.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 9: Pemrograman Berorientasi Objek 101

4. Buatlah kelas Karyawan dan KepalaBagian yang menggunakan pewarisan.

KepalaBagian harus memiliki tambahan atribut departemen dan metode khusus

untuk mengatur proyek.

E. Pustaka

Budd, T. A. (2002). An Introduction to Object-Oriented Programming. Addison-Wesley.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to

Algorithms. MIT Press.

Larman, C. (2004). Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and Iterative Development. Pearson.

McDowell, G. L. (2015). Cracking the Coding Interview: 189 Programming Questions and

Solutions. CareerCup.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 10: Debugging 102

Modul 10: Debugging

Modul ini dirancang sebagai panduan komprehensif bagi mahasiswa untuk memahami

konsep dan praktik debugging dalam pemrograman, khususnya menggunakan bahasa

Python. Modul ini memiliki relevansi tinggi bagi mahasiswa, terutama dalam

mengidentifikasi dan memperbaiki kesalahan yang muncul selama pengembangan

program. Dengan mengikuti modul ini, mahasiswa diharapkan mampu memahami dan

menerapkan teknik debugging secara efektif untuk meningkatkan kualitas kode dan

efisiensi proses pengembangan perangkat lunak.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 10: Debugging 103

A. Penyajian materi

1. Pengertian Debugging

Debugging adalah proses mendeteksi, mendiagnosis, dan memperbaiki

kesalahan atau bug dalam sebuah program. Bug dapat berupa kesalahan sintaksis,

logika, atau runtime yang menyebabkan program tidak berfungsi sebagaimana

mestinya. Debugging merupakan keterampilan penting yang harus dimiliki oleh

setiap programmer, karena kesalahan dalam kode sering kali sulit dideteksi tanpa

alat dan teknik yang tepat.

2. Jenis-jenis bug

• Kesalahan Sintaks (Syntax Errors): Kesalahan yang terjadi karena

pelanggaran aturan sintaksis bahasa pemrograman. Misalnya, lupa menutup

tanda kurung atau salah mengetik kata kunci.

• Kesalahan Logika (Logic Errors): Kesalahan yang tidak menyebabkan

program gagal tetapi menghasilkan output yang salah. Misalnya, kesalahan

dalam perhitungan atau penggunaan variabel.

• Kesalahan Runtime (Runtime Errors): Kesalahan yang terjadi saat program

dijalankan, seperti pembagian dengan nol atau mengakses elemen yang tidak

ada dalam list.

3. Teknik Debugging dasar

• Print Statements: Menyisipkan pernyataan print untuk melacak nilai

variabel dan alur eksekusi kode.

• Manual Debugging: Memeriksa kode secara manual untuk menemukan

kesalahan.

• Unit Testing: Menulis tes otomatis untuk memastikan bagian-bagian kecil

dari kode berfungsi dengan benar.

4. Debugging dengan PyCharm

PyCharm menyediakan fitur debugging yang kuat untuk membantu menemukan

dan memperbaiki kesalahan dengan lebih efisien:

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 10: Debugging 104

• Breakpoint: Titik berhenti yang dapat diletakkan pada baris tertentu dalam

kode. Program akan berhenti pada titik ini selama eksekusi, memungkinkan

Anda untuk memeriksa nilai variabel dan alur eksekusi.

• Stepping: Menjalankan kode satu langkah pada satu waktu. Ada beberapa

opsi stepping, seperti step over (melewati fungsi), step into (masuk ke dalam

fungsi), dan step out (keluar dari fungsi).

• Watches dan Evaluasi: Memantau nilai variabel atau mengekspresikan nilai

selama debugging. Anda dapat menambahkan variabel ke daftar watch untuk

memantau nilai mereka secara real-time.

• Console Debugger: Konsol interaktif yang memungkinkan Anda

menjalankan perintah Python dan memeriksa nilai variabel selama sesi

debugging.

5. Contoh Debugging di PyCharm

• Langkah 1: Set breakpoint pada baris average = total / len(numbers).

• Langkah 2: Jalankan program dalam mode debugging.

• Langkah 3: Periksa nilai total dan len(numbers) di jendela variabel PyCharm.

• Langkah 4: Temukan bahwa nilai total dan len(numbers) sesuai, tetapi jika

tidak sesuai, Anda dapat mengidentifikasi dan memperbaiki masalah.

B. Latihan/contoh

Latihan 1: Debugging Kesalahan Sintaks

Soal Latihan: Temukan dan perbaiki kesalahan sintaks pada kode berikut:

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 10: Debugging 105

Cara Pengerjaan: Identifikasi kesalahan dan perbaiki kode dengan menambahkan tanda

kurung yang hilang.

Kode yang Diperbaiki:

Penjelasan: Kesalahan sintaks disebabkan oleh tanda kurung yang tidak ditutup pada

pemanggilan fungsi greet. Menambahkan tanda kurung yang hilang memperbaiki

kesalahan ini.

Latihan 2: Debugging Kesalahan Logika

Soal Latihan: Debugging kode yang salah menghitung rata-rata:

Cara Pengerjaan: Set breakpoint pada baris return total dan periksa nilai total dan

len(numbers).

Penjelasan: Dalam hal ini, kode sudah benar tetapi jika terdapat kesalahan, Anda harus

memeriksa nilai variabel dan memastikan bahwa perhitungan dilakukan dengan benar.

Latihan 3: Menggunakan Breakpoints

Soal Latihan: Tempatkan breakpoint dan gunakan fitur stepping untuk menemukan

kesalahan pada kode berikut:

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 10: Debugging 106

Cara Pengerjaan: Tempatkan breakpoint di baris result *= i, jalankan program dalam

mode debugging, dan gunakan fitur stepping untuk melacak perubahan nilai result dan i.

Penjelasan: Menyisipkan breakpoint dan menggunakan fitur stepping membantu

memverifikasi setiap langkah eksekusi dan memeriksa hasil yang diharapkan.

C. Rangkuman

Modul ini membahas konsep dasar debugging, termasuk jenis-jenis kesalahan seperti

kesalahan sintaks, logika, dan runtime. Teknik debugging yang dibahas meliputi

penggunaan pernyataan print, manual debugging, dan unit testing. PyCharm menyediakan

alat yang berguna seperti breakpoints, stepping, dan console debugger untuk

mempermudah proses debugging. Dengan memahami dan memanfaatkan fitur ini,

mahasiswa dapat lebih efektif dalam menemukan dan memperbaiki kesalahan dalam kode

Python mereka.

D. Tugas

1. Jelaskan perbedaan antara kesalahan sintaks, logika, dan runtime dalam

pemrograman. Berikan contoh untuk masing-masing jenis kesalahan.

2. Diskusikan manfaat menggunakan alat debugging seperti breakpoints dan watches

dalam lingkungan pengembangan seperti PyCharm.

3. Tulis program Python yang mengandung kesalahan logika dan gunakan teknik

debugging untuk menemukan dan memperbaikinya. Sertakan penjelasan tentang

proses debugging yang dilakukan.

4. Implementasikan unit tests untuk fungsi sederhana seperti penjumlahan atau

faktorial, dan gunakan PyCharm untuk menjalankan dan menganalisis hasil tes.

E. Pustaka

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Modul 10: Debugging 107

Al Sweigart. (2019). Automate the Boring Stuff with Python: Practical Programming for

Total Beginners. No Starch Press.

Luciano Ramalho. (2015). Fluent Python: Clear, Concise, and Effective Programming.

O'Reilly Media.

Python Software Foundation. (2023). Python Documentation: pdb — The Python

Debugger. Retrieved from https://docs.python.org/3/library/pdb.html

Hunt, A., & Thomas, D. (1999). The Pragmatic Programmer: From Journeyman to Master.

Addison-Wesle

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Implementasi Proyek Akhir Pemrograman 108

Implementasi Proyek Akhir Pemrograman

 Proyek akhir ini dirancang untuk menguji pemahaman dan penerapan konsep-konsep

pemrograman yang telah dipelajari selama kursus, dengan mahasiswa ditantang

mengembangkan solusi pemrograman kompleks dan terstruktur yang mencakup

penggunaan berbagai teknik dan alat yang telah dibahas. Tujuan proyek ini adalah untuk

mengintegrasikan konsep seperti algoritma pencarian dan pengurutan, pemrograman

berorientasi objek, serta debugging, dan untuk mengembangkan kemampuan mahasiswa

dalam merancang dan mengimplementasikan solusi pemrograman yang komprehensif,

baik secara mandiri maupun dalam tim. Selain itu, proyek ini bertujuan meningkatkan

keterampilan dalam penggunaan alat pengembangan seperti PyCharm dan bahasa

pemrograman Python. Relevansi bagi mahasiswa terletak pada kesempatan untuk

menerapkan pengetahuan teoritis dalam konteks praktis, yang penting untuk persiapan

menghadapi tantangan di dunia kerja, terutama dalam mengembangkan dan mengelola

proyek pemrograman yang kompleks. Pengalaman ini juga akan meningkatkan

kemampuan analitis dan teknis mahasiswa melalui penyelesaian masalah nyata.

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Implementasi Proyek Akhir Pemrograman 109

A. Deskripsi Proyek :

Mahasiswa akan mengembangkan sebuah aplikasi manajemen toko buku

menggunakan Python, yang akan mencakup berbagai fitur untuk mengelola inventaris

buku, penjualan, serta data pelanggan. Aplikasi ini harus menerapkan konsep-konsep

yang telah dipelajari, seperti algoritma pencarian dan pengurutan, pemrograman

berorientasi objek (OOP), dan debugging. Proyek ini akan diselesaikan dalam tim

kecil atau secara individu.

B. Fitur Utama :

1. Manajemen Buku:

• Tambah, edit, dan hapus data buku.

• Pencarian buku menggunakan berbagai algoritma pencarian (Linear Search,

Binary Search).

• Pengurutan daftar buku berdasarkan kriteria tertentu (judul, harga, dll.)

menggunakan algoritma pengurutan (Bubble Sort, Selection Sort, Insertion

Sort).

2. Manajemen Penjualan:

• Pencatatan transaksi penjualan buku.

• Perhitungan total penjualan harian, bulanan, dan tahunan.

• Penyimpanan riwayat transaksi dengan opsi pencarian dan pengurutan.

3. Manajemen Pelanggan:

• Tambah, edit, dan hapus data pelanggan.

• Pencarian pelanggan berdasarkan nama atau ID pelanggan.

• Penyimpanan riwayat pembelian pelanggan.

4. Pelaporan:

• Pembuatan laporan penjualan berdasarkan periode tertentu.

• Laporan buku terlaris dan pelanggan dengan transaksi terbanyak.

C. Teknologi yang digunakan :

• Bahasa Pemrograman: Python

• IDE: PyCharm

• Database: SQLite atau file CSV untuk penyimpanan data

D. Kriteria Penilaian

S1- Sistem Informasi UNIVERSITAS PGRI YOGYAKARTA

ALGORITMA & PEMROGRAMAN | Implementasi Proyek Akhir Pemrograman 110

1. Penerapan Kondep:

• Penggunaan algoritma pencarian dan pengurutan yang tepat.

• Penerapan prinsip OOP dalam desain kelas dan objek.

• Efektivitas dan efisiensi kode yang dihasilkan.

2. Kelengkapan Fitur:

• Implementasi semua fitur utama.

• Kemudahan penggunaan dan antarmuka yang ramah pengguna.

3. Debugging dan Pengujian:

• Identifikasi dan perbaikan bug dalam kode.

• Pengujian aplikasi untuk memastikan semua fitur berfungsi dengan baik.

4. Dokumentasi:

• Dokumentasi kode yang jelas dan mudah dipahami.

• Laporan proyek yang menjelaskan arsitektur aplikasi, fitur, dan proses

pengembangan.

E. Timeline :

• Minggu 1-2: Perencanaan proyek dan desain awal.

• Minggu 3-5: Pengembangan fitur dasar (manajemen buku, penjualan, dan

pelanggan).

• Minggu 6-7: Pengembangan fitur lanjutan dan pelaporan.

• Minggu 8: Debugging, pengujian, dan finalisasi proyek.

• Minggu 9: Presentasi dan penyerahan proyek akhir.

